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Abstract

Modern autonomous driving system is characterized as
modular tasks in sequential order, i.e., perception, predic-
tion, and planning. In order to perform a wide diversity of
tasks and achieve advanced-level intelligence, contempo-
rary approaches either deploy standalone models for indi-
vidual tasks, or design a multi-task paradigm with separate
heads. However, they might suffer from accumulative er-
rors or deficient task coordination. Instead, we argue that
a favorable framework should be devised and optimized in
pursuit of the ultimate goal, i.e., planning of the self-driving
car. Oriented at this, we revisit the key components within
perception and prediction, and prioritize the tasks such that
all these tasks contribute to planning. We introduce Unified
Autonomous Driving (UniAD), a comprehensive framework
up-to-date that incorporates full-stack driving tasks in one
network. It is exquisitely devised to leverage advantages of
each module, and provide complementary feature abstrac-
tions for agent interaction from a global perspective. Tasks
are communicated with unified query interfaces to facili-
tate each other toward planning. We instantiate UniAD on
the challenging nuScenes benchmark. With extensive abla-
tions, the effectiveness of using such a philosophy is proven
by substantially outperforming previous state-of-the-arts in
all aspects. Code and models are public.

1. Introduction

With the successful development of deep learning, au-
tonomous driving algorithms are assembled with a series
of tasks1, including detection, tracking, mapping in percep-
tion; and motion and occupancy forecast in prediction. As
depicted in Fig. 1(a), most industry solutions deploy stan-

1In the following context, we interchangeably use task, module, com-
ponent, unit and node to indicate a certain task (e.g., detection).

Figure 1. Comparison on the various designs of autonomous
driving framework. (a) Most industrial solutions deploy separate
models for different tasks. (b) The multi-task learning scheme
shares a backbone with divided task heads. (c) The end-to-end
paradigm unites modules in perception and prediction. Previous
attempts either adopt a direct optimization on planning in (c.1) or
devise the system with partial components in (c.2). Instead, we
argue in (c.3) that a desirable system should be planning-oriented
as well as properly organize preceding tasks to facilitate planning.

dalone models for each task independently [68, 71], as long
as the resource bandwidth of the onboard chip allows. Al-
though such a design simplifies the R&D difficulty across
teams, it bares the risk of information loss across modules,
error accumulation and feature misalignment due to the iso-
lation of optimization targets [57, 66, 82].

A more elegant design is to incorporate a wide span of
tasks into a multi-task learning (MTL) paradigm, by plug-
ging several task-specific heads into a shared feature extrac-
tor as shown in Fig. 1(b). This is a popular practice in many
domains, including general vision [79,92,108], autonomous
driving2 [15, 60, 101, 105], such as Transfuser [20], BEV-

2In this paper, we refer to MTL in autonomous driving as tasks be-
yond perception. There is plenty of work on MTL within perception, e.g.,
detection, depth, flow, etc. This kind of literature is out of scope.
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Design Approach Perception Prediction PlanDet. Track Map Motion Occ.

(b)
NMP [101] 3 3 3
NEAT [19] 3 3
BEVerse [105] 3 3 3

(c.1) [14, 16, 78, 97] 3

(c.2)

PnPNet† [57] 3 3 3
ViP3D† [30] 3 3 3
P3 [82] 3 3
MP3 [11] 3 3 3
ST-P3 [38] 3 3 3
LAV [15] 3 3 3 3

(c.3) UniAD (ours) 3 3 3 3 3 3

Table 1. Tasks comparison and taxonomy. “Design” column is
classified as in Fig. 1. “Det.” denotes 3D object detection, “Map”
stands for online mapping, and “Occ.” is occupancy map predic-
tion. †: these works are not proposed directly for planning, yet
they still share the spirit of joint perception and prediction. UniAD
conducts five essential driving tasks to facilitate planning.

erse [105], and industrialized products, e.g., Mobileye [68],
Tesla [87], Nvidia [71], etc. In MTL, the co-training strat-
egy across tasks could leverage feature abstraction; it could
effortlessly extend to additional tasks, and save computa-
tion cost for onboard chips. However, such a scheme may
cause undesirable “negative transfer” [23, 64].

By contrast, the emergence of end-to-end autonomous
driving [11, 15, 19, 38, 97] unites all nodes from perception,
prediction and planning as a whole. The choice and priority
of preceding tasks should be determined in favor of plan-
ning. The system should be planning-oriented, exquisitely
designed with certain components involved, such that there
are few accumulative error as in the standalone option or
negative transfer as in the MTL scheme. Table 1 describes
the task taxonomy of different framework designs.

Following the end-to-end paradigm, one “tabula-rasa”
practice is to directly predict the planned trajectory, with-
out any explicit supervision of perception and prediction as
shown in Fig. 1(c.1). Pioneering works [14,16,21,22,78,95,
97, 106] verified this vanilla design in the closed-loop sim-
ulation [26]. While such a direction deserves further explo-
ration, it is inadequate in safety guarantee and interpretabil-
ity, especially for highly dynamic urban scenarios. In this
paper, we lean toward another perspective and ask the fol-
lowing question: Toward a reliable and planning-oriented
autonomous driving system, how to design the pipeline in
favor of planning? which preceding tasks are requisite?

An intuitive resolution would be to perceive surround-
ing objects, predict future behaviors and plan a safe maneu-
ver explicitly, as illustrated in Fig. 1(c.2). Contemporary
approaches [11, 30, 38, 57, 82] provide good insights and
achieve impressive performance. However, we argue that
the devil lies in the details; previous works more or less fail
to consider certain components (see block (c.2) in Table 1),
being reminiscent of the planning-oriented spirit. We elabo-

rate on the detailed definition and terminology, the necessity
of these modules in the Supplementary.

To this end, we introduce UniAD, a Unified Autonomous
Driving algorithm framework to leverage five essential tasks
toward a safe and robust system as depicted in Fig. 1(c.3)
and Table 1(c.3). UniAD is designed in a planning-oriented
spirit. We argue that this is not a simple stack of tasks with
mere engineering effort. A key component is the query-
based design to connect all nodes. Compared to the classic
bounding box representation, queries benefit from a larger
receptive field to soften the compounding error from up-
stream predictions. Moreover, queries are flexible to model
and encode a variety of interactions, e.g., relations among
multiple agents. To the best of our knowledge, UniAD is
the first work to comprehensively investigate the joint co-
operation of such a variety of tasks including perception,
prediction and planning in the field of autonomous driving.

The contributions are summarized as follows. (a) we
embrace a new outlook of autonomous driving framework
following a planning-oriented philosophy, and demonstrate
the necessity of effective task coordination, rather than stan-
dalone design or simple multi-task learning. (b) we present
UniAD, a comprehensive end-to-end system that leverages
a wide span of tasks. The key component to hit the ground
running is the query design as interfaces connecting all
nodes. As such, UniAD enjoys flexible intermediate rep-
resentations and exchanging multi-task knowledge toward
planning. (c) we instantiate UniAD on the challenging
benchmark for realistic scenarios. Through extensive abla-
tions, we verify the superiority of our method over previous
state-of-the-arts in all aspects.

We hope this work could shed some light on the target-
driven design for the autonomous driving system, providing
a starting point for coordinating various driving tasks.

2. Methodology

Overview. As illustrated in Fig. 2, UniAD comprises four
transformer decoder-based perception and prediction mod-
ules and one planner in the end. Queries Q play the role
of connecting the pipeline to model different interactions of
entities in the driving scenario. Specifically, a sequence of
multi-camera images is fed into the feature extractor, and
the resulting perspective-view features are transformed into
a unified bird’s-eye-view (BEV) feature B by an off-the-
shelf BEV encoder in BEVFormer [55]. Note that UniAD
is not confined to a specific BEV encoder, and one can uti-
lize other alternatives to extract richer BEV representations
with long-term temporal fusion [31, 74] or multi-modality
fusion [58,64]. In TrackFormer, the learnable embeddings
that we refer to as track queries inquire about the agents’ in-
formation from B to detect and track agents. MapFormer

takes map queries as semantic abstractions of road ele-
ments (e.g., lanes and dividers) and performs panoptic seg-
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Figure 2. Pipeline of Unified Autonomous Driving (UniAD). It is exquisitely devised following planning-oriented philosophy. Instead of
a simple stack of tasks, we investigate the effect of each module in perception and prediction, leveraging the benefits of joint optimization
from preceding nodes to final planning in the driving scene. All perception and prediction modules are designed in a transformer decoder
structure, with task queries as interfaces connecting each node. A simple attention-based planner is in the end to predict future waypoints
of the ego-vehicle considering the knowledge extracted from preceding nodes. The map over occupancy is for visual purpose only.

mentation of the map. With the above queries represent-
ing agents and maps, MotionFormer captures interactions
among agents and maps and forecasts per-agent future tra-
jectories. Since the action of each agent can significantly
impact others in the scene, this module makes joint pre-
dictions for all agents considered. Meanwhile, we devise
an ego-vehicle query to explicitly model the ego-vehicle
and enable it to interact with other agents in such a scene-
centric paradigm. OccFormer employs the BEV feature
B as queries, equipped with agent-wise knowledge as keys
and values, and predicts multi-step future occupancy with
agent identity preserved. Finally, Planner utilizes the ex-
pressive ego-vehicle query from MotionFormer to predict
the planning result, and keep itself away from occupied re-
gions predicted by OccFormer to avoid collisions.

2.1. Perception: Tracking and Mapping

TrackFormer. It jointly performs detection and multi-
object tracking (MOT) without non-differentiable post-
processing. Inspired by [100, 104], we take a similar query
design. Besides the conventional detection queries utilized
in object detection [8, 109], additional track queries are in-
troduced to track agents across frames. Specifically, at each
time step, initialized detection queries are responsible for
detecting newborn agents that are perceived for the first
time, while track queries keep modeling those agents de-
tected in previous frames. Both detection queries and track
queries capture the agent abstractions by attending to BEV
feature B. As the scene continuously evolves, track queries
at the current frame interact with previously recorded ones
in a self-attention module to aggregate temporal informa-
tion, until the corresponding agents disappear completely
(untracked in a certain time period). Similar to [8], Track-
Former contains N layers and the final output state QA pro-
vides knowledge of Na valid agents for downstream predic-
tion tasks. Besides queries encoding other agents surround-

ing the ego-vehicle, we introduce one particular ego-vehicle
query in the query set to explicitly model the self-driving
vehicle itself, which is further used in planning.

MapFormer. We design it based on a 2D panoptic seg-
mentation method Panoptic SegFormer [56]. We sparsely
represent road elements as map queries to help downstream
motion forecasting, with location and structure knowledge
encoded. For driving scenarios, we set lanes, dividers and
crossings as things, and the drivable area as stuff [50]. Map-
Former also has N stacked layers whose output results of
each layer are all supervised, while only the updated queries
QM in the last layer are forwarded to MotionFormer for
agent-map interaction.

2.2. Prediction: Motion Forecasting

Recent studies have proven the effectiveness of trans-
former structure on the motion task [43,44,63,69,70,84,99],
inspired by which we propose MotionFormer in the end-to-
end setting. With highly abstract queries for dynamic agents
QA and static map QM from TrackFormer and MapFormer
respectively, MotionFormer predicts all agents’ multimodal
future movements, i.e., top-k possible trajectories, in a
scene-centric manner. This paradigm produces multi-agent
trajectories in the frame with a single forward pass, which
greatly saves the computational cost of aligning the whole
scene to each agent’s coordinate [49]. Meanwhile, we pass
the ego-vehicle query from TrackFormer through Motion-
Former to engage ego-vehicle to interact with other agents,
considering the future dynamics. Formally, the output mo-
tion is formulated as {x̂i,k 2 RT⇥2|i = 1, . . . , Na; k =
1, . . . ,K} , where i indexes the agent, k indexes the modal-
ity of trajectories and T is the length of prediction horizon.

MotionFormer. It is composed of N layers, and each
layer captures three types of interactions: agent-agent,
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agent-map and agent-goal point. For each motion query
Qi,k (defined later, and we omit subscripts i, k in the follow-
ing context for simplicity), its interactions between other
agents QA or map elements QM could be formulated as:

Qa/m = MHCA(MHSA(Q), QA/QM ), (1)

where MHCA, MHSA denote multi-head cross-attention and
multi-head self-attention [91] respectively. As it is also im-
portant to focus on the intended position, i.e., goal point,
to refine the predicted trajectory, we devise an agent-goal
point attention via deformable attention [109] as follows:

Qg = DeformAttn(Q, x̂l�1
T

, B), (2)

where x̂l�1
T

is the endpoint of the predicted trajectory of
previous layer. DeformAttn(q,r,x), a deformable atten-
tion module, takes in the query q, reference point r and spa-
tial feature x. It performs sparse attention on the spatial
feature around the reference point. Through this, the pre-
dicted trajectory is further refined as aware of the endpoint
surroundings. All three interactions are modeled in parallel,
where the generated Qa, Qm and Qg are concatenated and
passed to a multi-layer perceptron (MLP), resulting query
context Qctx. Then, Qctx is sent to the successive layer for
refinement or decoded as prediction results at the last layer.

Motion queries. The input queries for each layer of Mo-
tionFormer, termed motion queries, comprise two compo-
nents: the query context Qctx produced by the preceding
layer as described before, and the query position Qpos.
Specifically, Qpos integrates the positional knowledge in
four-folds as in Eq. (3): (1) the position of scene-level an-
chors Is; (2) the position of agent-level anchors Ia; (3) cur-
rent location of the agent i and (4) the predicted goal point.

Qpos = MLP(PE(Is)) + MLP(PE(Ia))

+ MLP(PE(x̂0)) + MLP(PE(x̂l�1
T

)).
(3)

Here the sinusoidal position encoding PE(·) followed by an
MLP is utilized to encode the positional points and x̂0

T
is

set as Is at the first layer (subscripts i, k are also omitted).
The scene-level anchor represents prior movement statistics
in a global view, while the agent-level anchor captures the
possible intention in the local coordinate. They are both
clustered by k-means algorithm on the endpoints of ground-
truth trajectories, to narrow down the uncertainty of pre-
diction. Contrary to the prior knowledge, the start point
provides customized positional embedding for each agent,
and the predicted endpoint serves as a dynamic anchor op-
timized layer-by-layer in a coarse-to-fine fashion.

Non-linear Optimization. Different from conventional
motion forecasting works which have direct access to

ground truth perceptual results, i.e., agents’ location and
corresponding tracks, we consider the prediction uncer-
tainty from the prior module in our end-to-end paradigm.
Brutally regressing the ground-truth waypoints from an
imperfect detection position or heading angle may lead
to unrealistic trajectory predictions with large curvature
and acceleration. To tackle this, we adopt a non-linear
smoother [7] to adjust the target trajectories and make them
physically feasible given an imprecise starting point pre-
dicted by the upstream module. The process is:

x̃⇤ = argmin
x

c(x, x̃), (4)

where x̃ and x̃⇤ denote the ground-truth and smoothed tra-
jectory, x is generated by multiple-shooting [3], and the cost
function is as follows:

c(x, x̃) = �xykx, x̃k2 + �goalkxT , x̃T k2 +
X

�2�

�(x), (5)

where �xy and �goal are hyperparameters, the kinematic
function set � has five terms including jerk, curvature, cur-
vature rate, acceleration and lateral acceleration. The cost
function regularizes the target trajectory to obey kinematic
constraints. This target trajectory optimization is only con-
ducted in training and does not affect inference.

2.3. Prediction: Occupancy Prediction

Occupancy grid map is a discretized BEV representa-
tion where each cell holds a belief indicating whether it
is occupied, and the occupancy prediction task is to dis-
cover how the grid map changes in the future. Previous
approaches utilize RNN structure for temporally expanding
future predictions from observed BEV features [35,38,105].
However, they rely on highly hand-crafted clustering post-
processing to generate per-agent occupancy maps, as they
are mostly agent-agnostic by compressing BEV features as
a whole into RNN hidden states. Due to the deficient us-
age of agent-wise knowledge, it is challenging for them to
predict the behaviors of all agents globally, which is es-
sential to understand how the scene evolves. To address
this, we present OccFormer to incorporate both scene-level
and agent-level semantics in two aspects: (1) a dense scene
feature acquires agent-level features via an exquisitely de-
signed attention module when unrolling to future horizons;
(2) we produce instance-wise occupancy easily by a matrix
multiplication between agent-level features and dense scene
features without heavy post-processing.

OccFormer is composed of To sequential blocks where
To indicates the prediction horizon. Note that To is typically
smaller than T in the motion task, due to the high compu-
tation cost of densely represented occupancy. Each block
takes as input the rich agent features Gt and the state (dense
feature) F t�1 from the previous layer, and generates F t for
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timestep t considering both instance- and scene-level infor-
mation. To get agent feature Gt with dynamics and spatial
priors, we max-pool motion queries from MotionFormer in
the modality dimension denoted as QX 2 RNa⇥D, with D
as the feature dimension. Then we fuse it with the upstream
track query QA and current position embedding PA via a
temporal-specific MLP:

Gt = MLPt([QA, PA, QX ]), t = 1, . . . , To, (6)

where [·] indicates concatenation. For the scene-level
knowledge, the BEV feature B is downscaled to 1/4 reso-
lution for training efficiency to serve as the first block in-
put F 0. To further conserve training memory, each block
follows a downsample-upsample manner with an attention
module in between to conduct pixel-agent interaction at 1/8
downscaled feature, denoted as F t

ds.

Pixel-agent interaction is designed to unify the scene-
and agent-level understanding when predicting future occu-
pancy. We take the dense feature F t

ds as queries, instance-
level features as keys and values to update the dense feature
over time. Detailedly, F t

ds is passed through a self-attention
layer to model responses between distant grids, then a cross-
attention layer models interactions between agent features
Gt and per-grid features. Moreover, to align the pixel-agent
correspondence, we constrain the cross-attention by an at-
tention mask, which restricts each pixel to only look at the
agent occupying it at timestep t, inspired by [17]. The up-
date process of the dense feature is formulated as:

Dt

ds = MHCA(MHSA(F t

ds), G
t, attn mask = Ot

m
). (7)

The attention mask Ot

m
is semantically similar to occu-

pancy, and is generated by multiplying an additional agent-
level feature and the dense feature F t

ds, where we name the
agent-level feature here as mask feature M t = MLP(Gt).
After the interaction process in Eq. (7), Dt

ds is upsampled to
1/4 size of B. We further add Dt

ds with block input F t�1 as
a residual connection, and the resulting feature F t is passed
to the next block.

Instance-level occupancy. It represents the occupancy
with each agent’s identity preserved. It could be simply
drawn via matrix multiplication, as in recent query-based
segmentation works [18, 52]. Formally, in order to get
an occupancy prediction of original size H ⇥W of BEV
feature B, the scene-level features F t are upsampled to
F t

dec 2 RC⇥H⇥W by a convolutional decoder, where C is
the channel dimension. For the agent-level feature, we fur-
ther update the coarse mask feature M t to the occupancy
feature U t 2 RNa⇥C by another MLP. We empirically find
that generating U t from mask feature M t instead of orig-
inal agent feature Gt leads to superior performance. The
final instance-level occupancy of timestep t is:

Ôt

A
= U t · F t

dec. (8)

2.4. Planning

Planning without high-definition (HD) maps or prede-
fined routes usually requires a high-level command to indi-
cate the direction to go [11, 38]. Following this, we con-
vert the raw navigation signals (i.e., turn left, turn right
and keep forward) into three learnable embeddings, named
command embeddings. As the ego-vehicle query from Mo-
tionFormer already expresses its multimodal intentions, we
equip it with command embeddings to form a “plan query”.
We attend plan query to BEV features B to make it aware
of surroundings, and then decode it to future waypoints ⌧̂ .

To further avoid collisions, we optimize ⌧̂ based on New-
ton’s method in inference only by the following:

⌧⇤ = argmin
⌧

f(⌧, ⌧̂ , Ô), (9)

where ⌧̂ is the original planning prediction, ⌧⇤ denotes
the optimized planning, which is selected from multiple-
shooting [3] trajectories ⌧ as to minimize cost function f(·).
Ô is a classical binary occupancy map merged from the
instance-wise occupancy prediction from OccFormer. The
cost function f(·) is calculated by:

f(⌧, ⌧̂ , Ô) = �coordk⌧, ⌧̂k2 + �obs
X

t

D(⌧t, Ô
t), (10)

D(⌧t, Ô
t) =

X

(x,y)2S

1

�
p
2⇡

exp(�k⌧t � (x, y)k22
2�2

). (11)

Here �coord, �obs, and � are hyperparameters, and t indexes
a timestep of future horizons. The l2 cost pulls the trajectory
toward the original predicted one, while the collision term
D pushes it away from occupied grids, considering sur-
rounding positions confined to S = {(x, y)|k(x, y)�⌧tk2 <
d, Ôt

x,y
= 1}.

2.5. Learning

UniAD is trained in two stages. We first jointly train
perception parts, i.e., the tracking and mapping modules,
for a few epochs (6 in our experiments), and then train the
model end-to-end for 20 epochs with all perception, predic-
tion and planning modules. The two-stage training is found
more stable empirically. We refer the audience to the Sup-
plementary for details of each loss.

Shared matching. Since UniAD involves instance-wise
modeling, pairing predictions to the ground truth set is
required in perception and prediction tasks. Similar to
DETR [8, 56], the bipartite matching algorithm is adopted
in the tracking and online mapping stage. As for tracking,
candidates from detection queries are paired with newborn
ground truth objects, and predictions from track queries in-
herit the assignment from previous frames. The matching
results in the tracking module are reused in motion and oc-
cupancy nodes to consistently model agents from historical
tracks to future motions in the end-to-end framework.
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ID Modules Tracking Mapping Motion Forecasting Occupancy Prediction Planning
Track Map Motion Occ. Plan AMOTA" AMOTP# IDS# IoU-lane" IoU-road" minADE# minFDE# MR# IoU-n." IoU-f." VPQ-n." VPQ-f." avg.L2# avg.Col.#

0⇤ 3 3 3 3 3 0.356 1.328 893 0.302 0.675 0.858 1.270 0.186 55.9 34.6 47.8 26.4 1.154 0.941

1 3 0.348 1.333 791 - - - - - - - - - - -
2 3 - - - 0.305 0.674 - - - - - - - - -
3 3 3 0.355 1.336 785 0.301 0.671 - - - - - - - - -

4 3 - - - - - 0.815 1.224 0.182 - - - - - -
5 3 3 0.360 1.350 919 - - 0.751 1.109 0.162 - - - - - -
6 3 3 3 0.354 1.339 820 0.303 0.672 0.736(-9.7%) 1.066(-12.9%) 0.158 - - - - - -

7 3 - - - - - - - - 60.5 37.0 52.4 29.8 - -
8 3 3 0.360 1.322 809 - - - - - 62.1 38.4 52.2 32.1 - -
9 3 3 3 3 0.359 1.359 1057 0.304 0.675 0.710(-3.5%) 1.005(-5.8%) 0.146 62.3 39.4 53.1 32.2 - -

10 3 - - - - - - - - - - - 1.131 0.773
11 3 3 3 3 0.366 1.337 889 0.303 0.672 0.741 1.077 0.157 - - - - 1.014 0.717
12 3 3 3 3 3 0.358 1.334 641 0.302 0.672 0.728 1.054 0.154 62.3 39.5 52.8 32.3 1.004 0.430

Table 2. Detailed ablations on the effectiveness of each task. We can conclude that two perception sub-tasks greatly help motion
forecasting, and prediction performance also benefits from unifying the two prediction modules. With all prior representations, our goal-
planning boosts significantly to ensure safety. UniAD outperforms naive MTL solution by a large margin for prediction and planning tasks,
and it also owns the superiority that no substantial perceptual performance drop occurs. Only main metrics are shown for brevity. “avg.L2”
and “avg.Col” are the average values across the planning horizon. ⇤: ID-0 is the MTL scheme with separate heads for each task.

3. Experiments

We conduct experiments on the challenging nuScenes
dataset [6]. In this section, we validate the effectiveness
of our design in three aspects: joint results revealing the
advantage of task coordination and its effect on planning,
modular results of each task compared with previous meth-
ods, and ablations on the design space for specific modules.
Due to space limit, the full suite of protocols, some abla-
tions and visualizations are provided in the Supplementary.

3.1. Joint Results

We conduct extensive ablations as shown in Table 2 to
prove the effectiveness and necessity of preceding tasks in
the end-to-end pipeline. Each row of this table shows the
model performance when incorporating task modules listed
in the second Modules column. The first row (ID-0) serves
as a vanilla multi-task baseline with separate task heads for
comparison. The best result of each metric is marked in
bold, and the runner-up result is underlined in each column.

Roadmap toward safe planning. As prediction is closer
to planning compared to perception, we first investigate
the two types of prediction tasks in our framework, i.e.,
motion forecasting and occupancy prediction. In Exp.10-
12, only when the two tasks are introduced simultane-
ously (Exp.12), both metrics of the planning L2 and colli-
sion rate achieve the best results, compared to naive end-
to-end planning without any intermediate tasks (Exp.10,
Fig. 1(c.1)). Thus we conclude that both these two predic-
tion tasks are required for a safe planning objective. Tak-
ing a step back, in Exp.7-9, we show the cooperative ef-
fect of two types of prediction. The performance of both
tasks get improved when they are closely integrated (Exp.9,
-3.5% minADE, -5.8% minFDE, -1.3 MR(%), +2.4 IoU-
f.(%), +2.4 VPQ-f.(%)), which demonstrates the necessity
to include both agent and scene representations. Mean-
while, in order to realize a superior motion forecasting per-

formance, we explore how perception modules could con-
tribute in Exp.4-6. Notably, incorporating both tracking and
mapping nodes brings remarkable improvement to forecast-
ing results (-9.7% minADE, -12.9% minFDE, -2.3 MR(%)).
We also present Exp.1-3, which indicate training perception
sub-tasks together leads to comparable results to a single
task. Additionally, compared with naive multi-task learn-
ing (Exp.0, Fig. 1(b)), Exp.12 outperforms it by a signif-
icant margin in all essential metrics (-15.2% minADE, -
17.0% minFDE, -3.2 MR(%)), +4.9 IoU-f.(%)., +5.9 VPQ-
f.(%), -0.15m avg.L2, -0.51 avg.Col.(%)), showing the su-
periority of our planning-oriented design.

3.2. Modular Results

Following the sequential order of perception-prediction-
planning, we report the performance of each task module in
comparison to prior state-of-the-arts on the nuScenes vali-
dation set. Note that UniAD jointly performs all these tasks
with a single trained network. The main metric for each task
is marked with gray background in tables.

Perception results. As for multi-object tracking in Ta-
ble 3, UniAD yields a significant improvement of +6.5

and +14.2 AMOTA(%) compared to MUTR3D [104] and
ViP3D [30] respectively. Moreover, UniAD achieves the
lowest ID switch score, showing its temporal consistency
for each tracklet. For online mapping in Table 4, UniAD
performs well on segmenting lanes (+7.4 IoU(%) compared
to BEVFormer), which is crucial for downstream agent-
road interaction in the motion module. As our tracking
module follows an end-to-end paradigm, it is still inferior to
tracking-by-detection methods with complex associations
such as Immortal Tracker [93], and our mapping results trail
previous perception-oriented methods on specific classes.
We argue that UniAD is to benefit final planning with per-
ceived information rather than optimizing perception with
full model capacity.
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Method AMOTA" AMOTP# Recall" IDS#
Immortal Tracker† [93] 0.378 1.119 0.478 936

ViP3D [30] 0.217 1.625 0.363 -
QD3DT [36] 0.242 1.518 0.399 -
MUTR3D [104] 0.294 1.498 0.427 3822
UniAD 0.359 1.320 0.467 906

Table 3. Multi-object tracking. UniAD outperforms previ-
ous end-to-end MOT techniques (with image inputs only) on all
metrics. †: Tracking-by-detection method with post-association,
reimplemented with BEVFormer for a fair comparison.

Method Lanes" Drivable" Divider" Crossing"
VPN [72] 18.0 76.0 - -
LSS [76] 18.3 73.9 - -
BEVFormer [55] 23.9 77.5 - -
BEVerse† [105] - - 30.6 17.2

UniAD 31.3 69.1 25.7 13.8

Table 4. Online mapping. UniAD achieves competitive perfor-
mance against state-of-the-art perception-oriented methods, with
comprehensive road semantics. We report segmentation IoU (%).
†: Reimplemented with BEVFormer.

Method minADE(m)# minFDE(m)# MR# EPA"
PnPNet† [57] 1.15 1.95 0.226 0.222
ViP3D [30] 2.05 2.84 0.246 0.226
Constant Pos. 5.80 10.27 0.347 -
Constant Vel. 2.13 4.01 0.318 -
UniAD 0.71 1.02 0.151 0.456

Table 5. Motion forecasting. UniAD remarkably outperforms
previous vision-based end-to-end methods. We also report two
settings of modeling vehicles with constant positions or velocities
as comparisons. †: Reimplemented with BEVFormer.

Prediction results. Motion forecasting results are shown
in Table 5, where UniAD remarkably outperforms previ-
ous vision-based end-to-end methods. It reduces predic-
tion errors by 38.3% and 65.4% on minADE compared to
PnPNet-vision [57] and ViP3D [30] respectively. In terms
of occupancy prediction reported in Table 6, UniAD gets
notable advances in nearby areas, yielding +4.0 and +2.0 on
IoU-near(%) compared to FIERY [35] and BEVerse [105]
with heavy augmentations, respectively.

Planning results. Benefiting from rich spatial-temporal
information in both the ego-vehicle query and occupancy,
UniAD reduces planning L2 error and collision rate by
51.2% and 56.3% compared to ST-P3 [38], in terms of
the average value for the planning horizon. Moreover,
it notably outperforms several LiDAR-based counterparts,
which is often deemed challenging for perception tasks.

3.3. Qualitative Results

Fig. 3 visualizes the results of all tasks for one complex
scene. The ego vehicle drives with notice to the potential

Method IoU-n." IoU-f." VPQ-n." VPQ-f."
FIERY [35] 59.4 36.7 50.2 29.9
StretchBEV [1] 55.5 37.1 46.0 29.0
ST-P3 [38] - 38.9 - 32.1
BEVerse† [105] 61.4 40.9 54.3 36.1

UniAD 63.4 40.2 54.7 33.5

Table 6. Occupancy prediction. UniAD gets significant improve-
ment in nearby areas, which are more critical for planning. “n.”
and “f.” indicates near (30⇥30m) and far (50⇥50m) evaluation
ranges respectively. †: Trained with heavy augmentations.

Method L2(m)# Col. Rate(%)#
1s 2s 3s Avg. 1s 2s 3s Avg.

NMP† [101] - - 2.31 - - - 1.92 -
SA-NMP† [101] - - 2.05 - - - 1.59 -
FF† [37] 0.55 1.20 2.54 1.43 0.06 0.17 1.07 0.43
EO† [47] 0.67 1.36 2.78 1.60 0.04 0.09 0.88 0.33

ST-P3 [38] 1.33 2.11 2.90 2.11 0.23 0.62 1.27 0.71
UniAD 0.48 0.96 1.65 1.03 0.05 0.17 0.71 0.31

Table 7. Planning. UniAD achieves the lowest L2 error and colli-
sion rate in all time intervals and even outperforms LiDAR-based
methods (†) in most cases, verifying the safety of our system.

ID Scene-l.
Anch.

Goal
Inter. Ego Q NLO. minADE# minFDE# MR# minFDE

-mAP⇤ "

1 0.844 1.336 0.177 0.246
2 3 0.768 1.159 0.164 0.267
3 3 3 0.755 1.130 0.168 0.264
4 3 3 3 0.747 1.096 0.156 0.266
5 3 3 3 3 0.710 1.004 0.146 0.273

Table 8. Ablation for designs in the motion forecasting module.

All components contribute to the ultimate performance. “Scene-
l. Anch.” denotes rotated scene-level anchors. “Goal Inter.” means
the agent-goal point interaction. “Ego Q” represents the ego-
vehicle query and “NLO.” is the non-linear optimization strategy.
⇤: A metric considering detection and forecasting accuracy simul-
taneously, and we put details in the Supplementary.

movement of a front vehicle and lane. In the Supplemen-
tary, we show more visualizations of challenging scenarios
and one promising case for the planning-oriented design,
that inaccurate results occur in prior modules while the later
tasks could still recover, e.g., the planned trajectory remains
reasonable though objects have a large heading angle devi-
ation or fail to be detected in tracking results. Besides, we
analyze that failure cases of UniAD are mainly under some
long-tail scenarios such as large trucks and trailers, shown
in the Supplementary as well.

3.4. Ablation Study

Effect of designs in MotionFormer. Table 8 shows that
all of our proposed components described in Sec. 2.2 con-
tribute to final performance regarding minADE, minFDE,
Miss Rate and minFDE-mAP metrics. Notably, the rotated
scene-level anchor shows a significant performance boost (-
15.8% minADE, -11.2% minFDE, +1.9 minFDE-mAP(%)),
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Figure 3. Visualization results. We show results for all tasks in surround-view images and BEV. Predictions from motion and occupancy
modules are consistent, and the ego vehicle is yielding to the front black car in this case. Each agent is illustrated with a unique color. Only
top-1 and top-3 trajectories from motion forecasting are selected for visualization on image-view and BEV respectively.

ID Cross.
Attn.

Attn.
Mask

Mask
Feat. IoU-n." IoU-f." VPQ-n." VPQ-f."

1 61.2 39.7 51.5 31.8
2 3 61.3 39.4 51.0 31.8
3 3 3 62.3 39.7 52.4 32.5
4 3 3 3 62.6 39.5 53.2 32.8

Table 9. Ablation for designs in the occupancy prediction mod-

ule. Cross-attention with masks and the reuse of mask feature
helps improve the prediction. “Cross. Attn.” and “Attn. Mask”
represent cross-attention and the attention mask in the pixel-agent
interaction respectively. “Mask Feat.” denotes the reuse of the
mask feature for instance-level occupancy.

ID BEV Col. Occ. L2# Col. Rate#
Att. Loss Optim. 1s 2s 3s 1s 2s 3s

1 0.44 0.99 1.71 0.56 0.88 1.64
2 3 0.44 1.04 1.81 0.35 0.71 1.58
3 3 3 0.44 1.02 1.76 0.30 0.51 1.39
4 3 3 3 0.54 1.09 1.81 0.13 0.42 1.05

Table 10. Ablation for designs in the planning module. Results
demonstrate the necessity of each preceding task. “BEV Att.” in-
dicates attending to BEV feature. “Col. Loss” denotes collision
loss. “Occ. Optim.” is the optimization strategy with occupancy.

indicating that it is essential to do motion forecasting in
the scene-centric manner. The agent-goal point interac-
tion enhances the motion query with the planning-oriented
visual feature, and surrounding agents can further benefit
from considering the ego vehicle’s intention. Moreover,
the non-linear optimization strategy improves the perfor-
mance (-5.0% minADE, -8.4% minFDE, -1.0 MR(%), +0.7
minFDE-mAP(%)) by taking perceptual uncertainty into
account in the end-to-end scenario.

Effect of designs in OccFormer. As illustrated in Ta-
ble 9, attending each pixel to all agents without locality con-
straints (Exp.2) results in slightly worse performance com-
pared to an attention-free baseline (Exp.1). The occupancy-

guided attention mask resolves the problem and brings in
gain, especially for nearby areas (Exp.3, +1.0 IoU-n.(%),
+1.4 VPQ-n.(%)). Additionally, reusing the mask feature
M t instead of the agent feature to acquire the occupancy
feature further enhances performance.

Effect of designs in Planner. We provide ablations on
the proposed designs in planner in Table 10, i.e., attending
BEV features, training with the collision loss and the opti-
mization strategy with occupancy. Similar to previous re-
search [37, 38], a lower collision rate is preferred for safety
over naive trajectory mimicking (L2 metric), and is reduced
with all parts applied in UniAD.

4. Conclusion and Future Work

We discuss the system-level design for the autonomous
driving algorithm framework. A planning-oriented pipeline
is proposed toward the ultimate pursuit for planning,
namely UniAD. We provide detailed analyses on the neces-
sity of each module within perception and prediction. To
unify tasks, a query-based design is proposed to connect
all nodes in UniAD, benefiting from richer representations
for agent interaction in the environment. Extensive experi-
ments verify the proposed method in all aspects.
Limitations and future work. Coordinating such a com-
prehensive system with multiple tasks is non-trivial and
needs extensive computational power, especially trained
with temporal history. How to devise and curate the system
for a lightweight deployment deserves future exploration.
Moreover, whether or not to incorporate more tasks such
as depth estimation, behavior prediction, and how to embed
them into the system, are worthy future directions as well.
Acknowledgements. This work is partially supported by
National Key R&D Program of China (2022ZD0160100),
and in part by Shanghai Committee of Science and Tech-
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hicles. In CVPR, 2022. 1, 2, 15

[16] Dian Chen, Brady Zhou, Vladlen Koltun, and Philipp
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A. Task Definition

Detection and tracking. Detection and tracking are two
crucial perception tasks for autonomous driving, and we fo-
cus on representing them in the 3D space to facilitate down-
stream usage. 3D Detection is responsible for locating sur-
rounding objects (coordinates, length, width, height, etc.)
at each time stamp; tracking aims at finding the correspon-
dences between different objects across time stamps and as-
sociating them temporally (i.e., assigning a consistent track
ID for each agent). In the paper, we use multi-object track-
ing in some cases to denote the detection and tracking pro-
cess. The final output is a series of associated 3D boxes in
each frame, and their corresponding features QA are for-
warded to the motion module. Additionally, note that we
have one special query named ego-vehicle query for down-
stream tasks, which would not be included in the prediction-
ground truth matching process and it regresses the location
of ego-vehicle accordingly.

Online mapping. Map intuitively embodies the geomet-
ric and semantic information of the environment, and on-
line mapping is to segment meaningful road elements with
onboard sensor data (multi-view images in our case) as a
substitute for offline annotated high-definition (HD) maps.
In UniAD, we model the online map into four categories:
lanes, drivable area, dividers and pedestrian crossings, and
we segment them in bird’s-eye-view (BEV). Similar to QA,
the map queries QM would be further utilized in the motion
forecasting module to model the agent-map interaction.

Motion forecasting. Bridging perception and planning,
prediction plays an important role in the whole autonomous
driving system to ensure final safety. Typically, motion
forecasting is an independently developed module that pre-
dicts agents’ future trajectories with detected bounding
boxes and HD maps. And the bounding boxes are ground
truth annotations in most current motion datasets [27],
which is not realistic in onboard scenarios. While in this
paper, the motion forecasting module takes previously en-
coded sparse queries (i.e., QA and QM ) and dense BEV fea-
tures B as inputs, and forecasts K plausible trajectories in
future T timesteps for each agent. Besides, to be compatible
with our end-to-end and scene-centric scenarios, we predict
trajectories as offset according to each agent’s current po-
sition. The agent features before the last decoding MLPs,
which have encoded both the historical and future informa-
tion will be sent to the occupancy module for scene-level
future understanding. For the ego-vehicle query, it predicts
future ego-motion as well (actually providing a coarse plan-
ning estimation), and the feature is employed by the planner
to generate the ultimate goal.
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Occupancy prediction. Occupancy grid map is a dis-
cretized BEV representation where each cell holds a belief
indicating whether it is occupied, and the occupancy predic-
tion task is designed to discover how the grid map changes
in the future for To timesteps with multiple agent dynam-
ics. Complementary to motion forecasting which is con-
ditioned on sparse agents, occupancy prediction is densely
represented in the whole-scene level. To investigate how the
scene evolves with sparse agent knowledge, our proposed
occupancy module takes as inputs both the observed BEV
feature B and agent features Gt. After the multi-step agent-
scene interaction (detailedly described in Appendix E), the
instance-level probability map Ôt

A
2 RNa⇥H⇥W is gener-

ated via matrix multiplication between occupancy feature
and dense scene feature. To form whole-scene occupancy
with agent identity preserved Ôt2RH⇥W which is used for
occupancy evaluation and downstream planning, we simply
merge the instance-level probability at each timestep using
pixel-wise argmax as in [8].

Planning. As an ultimate goal, the planning module takes
all upstream results into consideration. Traditional planning
methods in the industry often are rule-based, formulated by
“if-else” state machines conditioned on various scenarios
which are described with prior detection and prediction re-
sults. In our learning-based model, we take the upstream
ego-vehicle query, and the dense BEV feature B as input,
and predict one trajectory ⌧̂ for total Tp timesteps. Then, the
trajectory ⌧̂ is optimized with the upstream predicted future
occupancy Ô to avoid collision and ensure final safety.

B. The Necessity of Each Task

In terms of perception, tracking in the loop as does
in PnPNet [57] and ViP3D [30] is proven to complement
spatial-temporal features and provide history tracks for oc-
cluded agents, refraining from catastrophic decisions for
downstream planning. With the aid of HD maps [30,57,82,
101] and motion forecasting, planning becomes more accu-
rate toward higher-level intelligence. However, such infor-
mation is expensive to construct and prone to be outdated,
raising the demand for online mapping without HD maps.
As for prediction, motion forecasting [10, 29, 41, 42, 107]
generates long-term future behaviors and preserves agent
identity in form of sparse waypoint outputs. Nonetheless,
there exists the challenge to integrate non-differentiable box
representation into subsequent planning module [30, 57].
Some recent literature investigates another type of predic-
tion task named occupancy [88] prediction to assist end-
to-end planning, in form of cost maps. However, the lack
of agent identity and dynamics in occupancy makes it im-
practical to model social interactions for safe planning. The
large computational consumption of modeling multi-step

dense features also leads to a much shorter temporal hori-
zon compared to motion forecasting. Therefore, to bene-
fit from the two complementary types of prediction tasks
for safe planning, we incorporate both agent-centric motion
and whole-scene occupancy in UniAD.

C. Related Work

C.1. Joint perception and prediction

Joint learning of perception and prediction is pro-
posed to avoid the cascading error in traditional modular-
independence pipelines. Similar to the motion forecasting
task alone, it usually has two types of output representa-
tions: agent-level bounding boxes and scene-level occu-
pancy grid maps. Pioneering work FaF [66] predicts boxes
in the future and aggregates past information to produce
tracklets. IntentNet [10] extends it to reason about inten-
tions and [25, 28] further predict future states in a refine-
ment fashion. Some exploit detection first and utilize agent
features in the second prediction stage [9, 53, 75]. Notic-
ing that history information is ignored, PnPNet [57] en-
riches it by estimating tracking association scores to avert
the non-differentiable optimization process as adopted by
the tracking-by-detection paradigm [54, 64, 85, 98]. Yet, all
these methods rely on non-maximum suppression (NMS) in
detection which still leads to information loss. ViP3D [30]
which is closely related to our work, employs agent queries
in [104] to forecast, taking HD map as another input. We
follow the philosophy of [30, 104] in agent track queries,
but also develop non-linear optimization on target trajecto-
ries to alleviate the potential inaccurate perception problem.
Moreover, we introduce an ego-vehicle query for better cap-
turing the ego behaviors in the dynamic environment, and
incorporate online mapping to prevent the localization risk
or high construction cost with HD map.

The alternative representation, namely the occupancy
grid map, discretizes the BEV map into grid cells which
holds a belief indicating if it is occupied. Wu et al. [96]
estimate a dense motion field, while it could not capture
multimodal behaviors. Fishing Net [33] also predicts deter-
ministic future BEV semantic segmentation with multiple
sensors. To address this, P3 [82] proposes non-parametric
distribution of future semantic occupancy and FIERY [35]
devises the first paradigm for multi-view cameras. A few
methods improve the performance of FIERY with more so-
phisticated uncertainty modeling [1, 38, 105]. Notably, this
representation could easily extend to motion planning for
collision avoidance [11,38,82], while it loses the agent iden-
tity characteristic and takes a heavy burden to computation
which may constrain the prediction horizon. In contrast, we
leverage agent-level information for occupancy prediction
and ensure accurate and safe planning by unifying these two
modes.
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C.2. Joint prediction and planning

PRECOG [81] proposes a recurrent model that condi-
tions forecasting on the goal position of the ego vehicle,
while PiP [86] generates agents’ motion considering com-
plete presumed planning trajectories. However, producing a
rough future trajectory is still challenging in the real world,
toward which [62] presents a deep structured model to de-
rive both prediction and planning from the same set of learn-
able costs. [39,40] couple the prediction model with classic
optimization methods. Meanwhile, some motion forecast-
ing methods implicitly include the planning task by produc-
ing their future trajectories simultaneously [12,45,70]. Sim-
ilarly, we encode possible behaviors of the ego vehicle in
the scene-centric motion forecasting module, but the inter-
pretable occupancy map is utilized to further optimize the
plan to stay safe.

C.3. End-to-end motion planning

End-to-end motion planning has been an active research
domain since Pomerleau [77] uses a single neural network
that directly predicts control signals. Subsequent studies
make great advances especially in closed-loop simulation
with deeper networks [4], multi-modal inputs [2, 21, 78],
multi-task learning [20, 97], reinforcement learning [13, 14,
46, 59, 89] and distillation from certain privilege knowl-
edge [16, 103, 106]. However, for such methods of directly
generating control outputs from sensor data, the transfer
from the synthetic environment to realistic application re-
mains a problem considering their robustness and safety
assurance [22, 38]. Thus researchers aim at explicitly de-
signing the intermediate representations of the network to
prompt safety, where predicting how the scene evolves at-
tracts broad interest. Some works [19,34,83] jointly decode
planning and BEV semantic predictions to enhance inter-
pretability, while PLOP [5] adopts a polynomial formula-
tion to provide smooth planning results for both ego vehi-
cle and neighbors. Cui et al. [24] introduce a contingency
planner with diverse sets of future predictions and LAV [15]
trains the planner with all vehicles’ trajectories to provide
richer training data. NMP [101] and its variant [94] estimate
a cost volume to select the plan with minimal cost besides
deterministic future perception. Though they risk producing
inconsistent results between two modules, the cost map de-
sign is intuitive to recover the final plan in complex scenar-
ios. Inspired by [101], most recent works [11,37,38,82,102]
propose models that construct costs with both learned occu-
pancy prediction and hand-crafted penalties. However, their
performances heavily rely on the tailored cost based on hu-
man experience and the distribution from where trajectories
are sampled [47]. Contrary to these approaches, we lever-
age the ego-motion information without sophisticated cost
design and present the first attempt that incorporates the
tracking module along with two genres of prediction rep-

resentations simultaneously in an end-to-end model.

D. Notations

We provide a lookup table of notations and their shapes
mentioned in this paper in Table 11 for reference.

E. Implementation Details

E.1. Detection and Tracking

We inherit most of the detection designs from BEV-
Former [55] which takes a BEV encoder to transform im-
age features into BEV feature B and adopts a Deformable
DETR head [109] to perform detection on B. To further
conduct end-to-end tracking without heavy post association,
we introduce another group of queries named track queries
as in MOTR [100] which continuously tracks previously ob-
served instances according to its assigned track ID. We in-
troduce the tracking process in detail below.

Training stage: At the beginning (i.e., first frame) of
each training sequence, all queries are considered detection
queries and predict all newborn objects, which is actually
the same as BEVFormer. Detection queries are matched
to the ground truth by the Hungarian algorithm [8]. They
will be stored and updated via the query interaction module
(QIM) for the next timestamp serving as track queries fol-
lowing MOTR [100]. In the next timestamp, track queries
will be directly matched with a part of ground-truth ob-
jects according to the corresponding track ID, and detection
queries will be matched with the remaining ground-truth
objects (newborn objects). To stabilize training, we adopt
the 3D IoU metric to filter the matched queries. Only those
predictions having the 3D IoU with ground-truth boxes
larger than a certain threshold (0.5 in practice) will be stored
and updated.

Inference stage: Different from the training stage, each
frame of a sequence is sent to the network sequentially,
meaning that track queries could exist for a longer horizon
than the training time. Another difference emerging in the
inference stage is about query updating, that we use classi-
fication scores to filter the queries (0.4 for detection queries
and 0.35 for track queries in practice) instead of the 3D IoU
metric since the ground truth is not available. Besides, to
avoid the interruption of tracklets caused by short-time oc-
clusion, we use a lifecycle mechanism for the tracklets in
the inference stage. Specifically, for each track query, it
will be considered to disappear completely and be removed
only when its corresponding classification score is smaller
than 0.35 for a continuous period (2s in practice).

E.2. Online Mapping

Following [56], we decompose the map query set into
thing queries and stuff queries. The thing queries model
instance-wise map elements (i.e., lanes, boundaries, and
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Notation Shape & Params. Description

Qo 900 number of initial object queries
D 256 embed dimensions
B 200⇥ 200⇥ 256 BEV feature encoded by a multi-view framework
N 6 number of transformer decoder layers for TrackFormer
N 6 number of transformer decoder layers for MapFormer
N 4 number of mask decoder layers for MapFormer
N 3 number of transformer decoder layers for MotionFormer
N 5 number of transformer decoder layers for OccFormer
N 3 number of transformer decoder layers for Planner
Na dynamic number of agents from TrackFormer
Nm 300 number of map queries from MapFormer
QA Na ⇥ 256 agent features from TrackFormer
PA Na ⇥ 256 agent positions from TrackFormer
QM Nm ⇥ 256 map features from MapFormer
K 6 number of forecasting modality in MotionFormer
x̃ T ⇥ 2 ground truth for one agent’s motion forecasting
x̂ Na ⇥ T ⇥ 2 prediction of motion forecasting
T 12 length of prediction timestamps in MotionFormer

Qpos Na ⇥K ⇥ 256 query position in MotionFormer
Qctx Na ⇥K ⇥ 256 query context in MotionFormer
Qa Na ⇥K ⇥ 256 motion query after agent-agent interaction in MotionFormer
Qm Na ⇥K ⇥ 256 motion query after agent-map interaction in MotionFormer
Qg Na ⇥K ⇥ 256 motion query after agent-goal point interaction in MotionFormer
l - index of decoder layer

PE - sinusoidal position encoding function
Is K ⇥ T ⇥ 2 scene-level anchor position in MotionFormer
Ia K ⇥ T ⇥ 2 agent-level anchor position in MotionFormer
� - kinematic cost function set
To 5 length of prediction timestamps in OccFormer
Gt Na ⇥ 256 agent feature input
F t 200⇥ 200⇥ 256 future state output
QX Na ⇥ 256 motion query (max-pooled on modality level) from the last layer of MotionFormer
F t

ds 25⇥ 25⇥ 256 downscaled dense feature
F t

dec 200⇥ 200⇥ 256 decoded dense feature after convolutional decoder
Dt

ds 25⇥ 25⇥ 256 agent-aware dense feature after pixel-agent interaction
Ôt

A
Na ⇥ 200⇥ 200 instance-level probability map

Ôt 200⇥ 200 classical instance-agnostic occupancy map merged from Ôt

A
for planning

Ot

m
200⇥ 200 attention mask for pixel-agent interaction

M t Na ⇥ 256 mask feature
U t Na ⇥ 256 occupancy feature
Tp 6 length of planning timestamps in Planner
⌧̂ Tp ⇥ 2 planned trajectory before the optimization with occupancy prediction
⌧⇤ Tp ⇥ 2 ultimate plan output
� - hyperparameters in cost functions, target functions, etc.

Table 11. Lookup table of notations and hyperparameters in the paper. The superscript t in certain notations denotes the t
th block of

OccFormer, and is omitted in descriptions for simplicity.
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Figure 4. MotionFormer. It consists of N stacked agent-agent,
agent-map, and agent-goal interaction transformers. The agent-
agent, and agent-map interaction modules are built with standard
transformer decoder layers. The agent-goal interaction module
is constructed upon the deformable cross-attention module [109].
I
s
T : the end point of scene-level anchor, IaT : the end point of clus-

tered agent-level anchor, x̂0: the agent’s current position, x̂l�1
T :

the predicted goal point from the previous layer, Ql�1
ctx : query con-

text from the previous layer.

Figure 5. Illustration of agent-goal interaction Module. The
BEV visual feature is sampled near each agent’s goal points with
deformable cross-attention.

pedestrian crossings) and are matched with ground truth via
bipartite matching, while the stuff query is only in charge
of semantic elements (i.e., drivable area) and is processed
with a class-fixed assignment. We set the total number of
thing queries to 300 and only 1 stuff query for the drivable
area. Also, we stack 6 location decoder layers and 4 mask
decoder layers (we follow the structure of those layers as
in [56]). We empirically choose thing queries after the loca-
tion decoder as our map queries QM for downstream tasks.

E.3. Motion Forecasting

To better illustrate the details, we provide a diagram
as shown in Fig. 4. Our MotionFormer takes Ia

T
, Is

T
, x̂0,

x̂l�1
T

2 RK⇥2 to embed query position, and takes Ql�1
ctx

as
query context. Specifically, the anchors are clustered among

training data of all agents by the k-means algorithm, and
we set K= 6 which is compatible with our output modali-
ties. To embed the scene-level prior, the anchor Ia

T
is rotated

and translated into the global coordinate frame according to
each agent’s current location and heading angle, which is
denoted as Is

T
, as shown in Eq. (12),

Is
i,T

= RiI
a

T
+ Ti, (12)

where i is the index of the agent, and it is omitted later for
brevity. To facilitate the coarse-to-fine paradigm, we also
adopt the goal point predicted from the previous layer x̂l�1

T
.

In the meantime, the agent’s current position is broadcast
across the modality, denoted as x̂0. Then, MLPs and si-
nusoidal positional embeddings are applied for each of the
prior positional knowledge and we summarize them as the
query position Qpos 2 RK⇥D, which is of the same shape as
the query context Qctx. Qpos and Qctx together build up our
motion query. We set D to 256 throughout MotionFormer.

As shown in Fig. 4, our MotionFormer consists of three
major transformer blocks, i.e., agent-agent, agent-map and
agent-goal interaction modules. The agent-agent, agent-
map interaction modules are built with standard transformer
decoder layers, which are composed of a multi-head self-
attention (MHSA) layer and a multi-head cross-attention
(MHCA) layer, a feed-forward network (FFN) and several
residual and normalization layers in between [8]. Apart
from the agent queries QA and map queries QM , we also
add the positional embeddings to those queries with si-
nusoidal positional embedding followed by MLP layers.
The agent-goal interaction module is built upon deformable
cross-attention module [109], where the goal point from the
previously predicted trajectory (Rix̂

l�1
i,T

+ Ti) is adopted as
the reference point, as shown in Fig. 5. Specifically, we
set the number of sampled points to 4 per trajectory, and
6 trajectories per agent as we mention above. The output
features of each interaction module are concatenated and
projected with MLP layers to dimension D = 256. Then,
we use Gaussian Mixture Model to build each agent’s tra-
jectories, where x̂l 2 RK⇥T⇥5. We set the prediction time
horizon T to 12 (6 seconds) in UniAD. Note that we only
take the first two of the last dimension (i.e., x and y) as fi-
nal output trajectories. Besides, the scores of each modality
are also predicted (score(x̂l) 2 RK). We stack the overall
modules for N times, and N is set to 3 in practice.

E.4. Occupancy Prediction

Given the BEV feature from upstream modules, we first
downsample it by /4 with convolutional layers for efficient
multi-step prediction, then pass it to our proposed Occ-
Former. OccFormer is composed of To sequential blocks
shown in Fig. 6, where To = 5 is the temporal horizon
(including current and future frames) and each block is re-
sponsible for generating occupancy of one specific frame.
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Different from prior works which are short of agent-level
knowledge, our proposed method incorporates both dense
scene features and sparse agent features when unrolling the
future representations. The dense scene feature is from the
output of the last block (or the observed feature for cur-
rent frame) and it’s further downscaled (/8) by a convolu-
tion layer to reduce computation for pixel-agent interac-
tion. The sparse agent feature is derived from the con-
catenation of track query QA, agent positions PA, and mo-
tion query QX , and it is then passed to a temporal-specific
MLP for temporal sensitivity. We conduct pixel-level self-
attention to model the long-term dependency required in
some rapidly changing scenes, then perform scene-agent
incorporation by attending each pixel of the scene to cor-
responding agents. To enhance the location alignment be-
tween agents and pixels, we restrict the cross-attention with
an attention mask which is generated by a matrix multipli-
cation between mask feature and downscaled scene feature,
where the mask feature is produced by encoding agent fea-
ture with an MLP. We then upsample the attended dense fea-
ture to the same resolution as input F t�1 (/4) and add it with
F t�1 as a residual connection for stability. The resulting
feature F t is both sent to the next block and a convolutional
decoder for predicting occupancy at the original BEV reso-
lution (/1). We reuse the mask feature and pass it to another
MLP to form occupancy feature, and the instance-level oc-
cupancy is therefore generated by a matrix multiplication
between occupancy feature and decoded dense feature F t

dec
(/1). Note that the MLP layer for mask feature, the MLP
layer for occupancy feature, and the convolutional decoder
are shared across all To blocks while other components are
independent in each block. Dimensions of all dense features
and agent features are 256 in OccFormer.

E.5. Planning

As shown in Fig. 7, our planner takes the ego-vehicle
query generated from the tracking and motion forecasting
module, which is symbolized with the blue triangle and
yellow rectangle respectively. These two queries, along
with the command embedding, are encoded with MLP lay-
ers followed by a max-pooling layer across the modality
dimension, where the most salient modal features are se-
lected and aggregated. The BEV feature interaction module
is built with standard transformer decoder layers, and it is
stacked for N layers, where we set N = 3 here. Specif-
ically, it cross-attends the dense BEV feature with the ag-
gregated plan query. More qualitative results can be found
in Appendix F.5 showing the effectiveness of this mod-
ule. To embed location information, we fuse the plan-
query with learned position embedding and the BEV fea-
ture with sinusoidal positional embedding. We then regress
the planning trajectory with MLP layers, which is denoted
as ⌧̂ 2 RTp⇥2. Here we set Tp = 6 (3 seconds). Finally,
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Figure 6. OccFormer. It is composed of To sequential blocks
where To is the temporal horizon (including current and future
frames) and each block is responsible for generating occupancy
of one specific frame. We incorporate both dense scene features
and sparse agent features, which are encoded from upstream track
query QA, agent position PA and motion query QX , to inject
agent-level knowledge into future scene representations. We form
instance-level occupancy Ô

t
A via a matrix multiplication between

agent-level feature and decoded dense feature at the end of each
block.

we devise the collision optimizer for obstacle avoidance,
which takes the predicted occupancy Ô and trajectory ⌧̂ as
input as Eq. (10) in the main paper. We set d=5, �=1.0,
�coord=1.0, �obs=5.0.

E.6. Training Details

Joint learning. UniAD is trained in two stages which we
find more stable. In stage one, we pre-train perception tasks
including tracking and online mapping to stabilize percep-
tion predictions. Specifically, we load corresponding pre-
trained BEVFormer [55] weights to UniAD for fast conver-
gence including image backbone, FPN, BEV encoder and
detection decoder except for object query embeddings (due
to the additional ego-vehicle query). We stop the gradient
back-propagation in the image backbone to reduce memory
cost and train UniAD for 6 epochs with tracking and online
mapping losses as follows:

L1 = Ltrack + Lmap. (13)
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Figure 7. Planner. Q
ego
A and Q

ego
ctx are the ego-vehicle query from

the tracking and motion forecasting modules, respectively. Along
with the high-level command, they are encoded with MLP layers
followed by a max-pooling layer across the modality dimension,
where the most salient modal features are selected and aggregated.
The BEV feature interaction module is built with standard trans-
former decoder layers, and it is stacked for N layers.

In stage two, we keep the image backbone frozen as well,
and additionally freeze BEV encoder, which is used for
view transformation from image view to BEV, to further
reduce memory consumption with more downstream mod-
ules. UniAD now is trained with all task losses including
tracking, mapping, motion forecasting, occupancy predic-
tion, and planning for 20 epochs (for various ablation stud-
ies in main paper, it’s trained for 8 epochs for efficiency):

L2 = Ltrack + Lmap + Lmotion + Locc + Lplan. (14)

Detailed losses and hyperparameters within each term of
L1 and L2 are described below individually. The length of
each training sequence (at each step) for tracking and BEV
feature aggregation [55] in both stages is 5 (3 in ablation
studies for efficiency).

Detection&tracking loss. Following BEVFormer [55],
the Hungarian loss is adopted for each paired result, which
is a linear combination of a Focal loss [61] for class labels
and an l1 for 3D boxes localization. In terms of the match-
ing strategy, candidates from newborn queries are paired
with ground truth objects through bipartite matching, and
predictions from track queries inherit the assigned ground

truth index from previous frames. Specifically, Ltrack =
�focalLfocal + �l1Ll1 , where �focal=2 and �l1 =0.25.

Online mapping loss. As in [56], this includes thing
losses for lanes, dividers, and contours, also a stuff loss for
the drivable area, where Focal loss is responsible for clas-
sification, L1 loss is responsible for thing bounding boxes,
Dice loss and GIoU loss [80] account for segmentation. De-
tailedly, Lmap = �focalLfocal+�l1Ll1+�giouLgiou+�diceLdice,
with �focal=�giou=�dice=2 and �l1 =0.25.

Motion forecasting loss. Like most of the prior meth-
ods, we model the multimodal trajectories as gaussian mix-
tures, and use the multi-path loss [12, 90], which includes a
classification score loss Lcls and a negative log-likelihood
loss term Lnll, and � denotes the corresponding weight:
Lmotion = �clsLcls + �regLnll, where �cls = �reg =0.5. To
ensure the temporal smoothness of trajectories, we predict
agents’ speed at each timestep first and accumulate it across
time to obtain their final trajectories [41].

Occupancy prediction loss. The output of instance-level
occupancy prediction is a binary segmentation of each
agent, therefore we adopt binary cross-entropy and Dice
loss [67] as the occupancy loss. Formally, Locc =
�bceLbce + �diceLdice, with �bce = 5 and �dice = 1 here.
Additionally, since the attention mask in the pixel-agent in-
teraction module could be seen as a coarse prediction, we
employ an auxiliary occupancy loss with the same form to
supervise it.

Planning loss. Safety is the most crucial factor in plan-
ning. Therefore, apart from the naive imitation l2 loss, we
employ another collision loss which keeps the planned tra-
jectory away from obstacles as follows:

Lcol(⌧̂ , �) =
X

i,t

IoU(box(⌧̂t, w + �, l + �), bi,t)), (15)

Lplan = �imi|⌧̂ , ⌧̃ |2 + �col
X

(!,�)

!Lcol(⌧̂ , �), (16)

where �imi = 1, �col = 2.5, (!, �) is a weight-value pair
considering additional safety distance, box(⌧̂t, w+�, l+�)
represents the ego bounding box with an increased size at
timestamp t to keep a larger safe distance, and bi,t indicates
each agent forecasted in the scene. In practice, we set (!, �)
to (1.0, 0.0), (0.4, 0.5), (0.1, 1.0).

F. Experiments

F.1. Protocols

We follow most of the basic training settings as in BEV-
Former [55] for both two stages with a batch size of 1, a
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learning rate of 2⇥10�4, learning rate multiplier of the back-
bone 0.1 and AdamW optimizer [65] with a weight decay of
1⇥10�2. The default size of BEV size is 200⇥200, cover-
ing BEV ranges of [-51.2m, 51.2m] for both X and Y axis
with the interval as 0.512m. More hyperparameters related
to feature dimensions are shown in Table 11. Experiments
are conducted with 16 NVIDIA Tesla A100 GPUs.

F.2. Metrics

Multi-object tracking. Following the standard evalua-
tion protocols, we use AMOTA (Average Multi-object
Tracking Accuracy), AMOTP (Average Multi-object
Tracking Precision), Recall, and IDS (Identity Switches)
to evaluate the 3D tracking performance of UniAD on
nuScenes dataset. AMOTA and AMOTP are computed by
integrating MOTA (Multi-object Tracking Accuracy) and
MOTP (Multi-object Tracking Precision) values over all re-
calls:

AMOTA =
1

n� 1

X

r2{ 1
n�1 ,

2
n�1 ,...,1}

MOTAr, (17)

MOTAr = max(0, 1� FPr + FNr + IDSr � (1� r)GT
rGT

),

(18)
where FPr, FNr, and IDSr represent the number of false
positives, false negatives and identity switches computed at
the corresponding recall r, respectively. GT stands for the
number of ground truth objects in this frame. AMOTP can
be defined as:

AMOTP =
1

n� 1

X

r2{ 1
n�1 ,

2
n�1 ,...,1}

P
i,t

di,t

TPr

, (19)

where di,t denotes the position error (in x and y axis) of
matched track i at time stamp t, and TPr is the number of
true positives at the corresponding recall r.

Online mapping. We have four categories for the online
mapping task, i.e., lanes, boundaries, pedestrian crossings
and drivable area. We calculate the intersection-over-union
(IoU) metric for each class between the network outputs and
ground truth maps.

Motion forecasting. On one hand, following the standard
motion prediction protocols, we adopt conventional met-
rics, including minADE (minimum Average Displacement
Error), minFDE (minimum Final Displacement Error) and
MR (Miss Rate). Similar to the prior works [57, 66, 75],
these metrics are only calculated within matched TPs, and
we set the matching threshold to 1.0m in all of our exper-
iments. As for the MR, we set the miss FDE threshold to

2.0m. On the other hand, we also employ recently pro-
posed end-to-end metrics, i.e., EPA (End-to-end Prediction
Accuracy) [30] and minFDE-AP [75]. For EPA, we use the
same setting as in ViP3D [30] for a fair comparison. For
minFDE-AP, we do not separate ground truth into multiple
bins (static, linear, and non-linearly moving sub-categories)
for simplicity. Specifically, only when an object’s percep-
tion location and its min-FDE are within the distance thresh-
old (1.0m and 2.0m respectively), it would be counted as a
TP for the AP (average precision) calculation. Similarly to
the prior works, we merge the car, truck, construction ve-
hicle, bus, trailer, motorcycle, and bicycle as the vehicle
category, and all the motion forecasting metrics provided in
the experiments are evaluated on the vehicle category.

Occupancy prediction. We evaluate the quality of pre-
dicted occupancy in both whole-scene level and instance-
level following [35, 105]. Specifically, The IoU mea-
sures the whole-scene categorical segmentations which
is instance-agnostic, while the Video Panoptic Quality
(VPQ) [48] takes into account each instance’s presence and
consistency over time. The VPQ metric is calculated as fol-
lows:

VPQ =
HX

t=0

P
(pt,qt)2TPt

IoU(pt, qt)

|TPt|+ 1
2 |FPt|+ 1

2 |FNt|
, (20)

where H is the future horizon and we set H = 4 (which
leads to To = 5 including the current timestamp) as in [35,
105], covering 2.0s consecutive data at 2Hz. TPt, FPt, and
FNt are the set of true positives, false positives, and false
negatives at timestamp t respectively. Both two metrics are
evaluated under two different BEV ranges, near (“-n.”) for
30m⇥30m and far (“-f.”) for 100m⇥100m around the ego
vehicle. We evaluate the results of the current step (t= 0)
and the future 4 steps together on both metrics.

Planning. We adopt the same metrics as in ST-P3 [38],
i.e., L2 error and collision rate at various timestamps.

F.3. Model complexity and Computational cost

We measure the complexity of UniAD and runtime on an
Nvidia Tesla A100 GPU, as depicted in Table 13. Though
the decoder part of tasks brings a certain amount of param-
eters, the computational complexity mainly comes from the
encoder part, compared to the original BEVFormer detec-
tor (ID. 1). We also provide a comparison with the recent
BEVerse [105]. UniAD owns more tasks, achieves superior
performance, and has lower FLOPs - indicating affordable
budget to additional computation cost.

F.4. Model scale

We provide three variations of UniAD under different
model scales as shown in Table 12. The chosen image
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Methods Encoder Tracking Mapping Motion Forecasting Occupancy Prediction Planning
AMOTA" AMOTP# IDS# IoU-lane" IoU-road" minADE# minFDE# MR# EPA" IoU-n." IoU-f." VPQ-n." VPQ-f." avg.L2# avg.Col.#

UniAD-S R50 0.241 1.488 958 0.315 0.689 0.788 1.126 0.156 0.381 59.4 35.6 49.2 28.9 1.04 0.32
UniAD-B R101 0.359 1.320 906 0.313 0.691 0.708 1.025 0.151 0.456 63.4 40.2 54.7 33.5 1.03 0.31
UniAD-L V2-99⇤

0.409 1.259 1583 0.323 0.709 0.723 1.067 0.158 0.508 64.1 42.6 55.8 36.9 1.03 0.29

Table 12. Comparisons between three variations of UniAD. ⇤: pre-trained with extra depth data [73].

ID Det. Track Map Motion Occ. Plan #Params FLOPs FPS

0 [105] 3 3 3 102.5M 1921G -

1 3 65.9M 1324G 4.2
2 3 3 68.2M 1326G 2.7
3 3 3 3 95.8M 1520G 2.2
4 3 3 3 3 108.6M 1535G 2.1
5 3 3 3 3 3 122.5M 1701G 2.0
6 3 3 3 3 3 3 125.0M 1709G 1.8

Table 13. Computational complexity and runtime with different
modules incorporated. ID.1 is similar to original BEVFormer [55],
and ID. 0 (BEVerse-Tiny) [105] is an MTL framework.

backbones for image-view feature extraction are ResNet-
50 [32], ResNet-101 and VoVNet 2-99 [51] for UniAD-S,
UniAD-B and UniAD-L respectively. Since the model scale
(image encoder) mainly influences the BEV feature quality,
we could observe that the perceptual scores improve with a
larger backbone, which further could lead to better predic-
tion and planning performance.

F.5. Qualitative results

Attention mask visualization. To investigate the internal
mechanism and show its explainability, we visualize the at-
tention mask of the cross-attention module in the planner.
As shown in Fig. 8, the predicted tracking bounding boxes,
planned trajectory, and the ground truth HD Map are ren-
dered for reference, and the attention mask is overlayered
on top. From left to right, we show two consecutive frames
in a time sequence but with different navigation commands.
We can observe that the planned trajectory varies largely
according to the command. Also, much attention is paid to
the goal lane as well as the critical agents that are yielding
to our ego vehicle.

Visualization of different scenarios. We provide visual-
izations for more scenarios, including cruising around the
urban areas (Fig. 9), critical cases (Fig. 10), and obstacle
avoidance scenarios (Fig. 11). One promising evidence for
our planning-oriented design is shown in Fig. 12, where in-
accurate results occur in prior modules while the later tasks
could still recover. Similarly, we show results for all tasks in
surround-view images, BEV, as well as the attention mask
from the planner. A demo video3 is also provided for refer-
ence.

3https://opendrivelab.github.io/UniAD/

Failure cases are essential for an autonomous driving al-
gorithm to understand its weakness and guide future work,
and here we present some failure cases of UniAD. The fail-
ure cases of UniAD are mainly under some long-tail sce-
narios where all modules are affected, as depicted in Fig. 13
and Fig. 14.
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Figure 8. Effectiveness of navigation command and attention mask visualization. Here we demonstrate how attention is paid in
accordance with the navigation command. We render the attention mask from the BEV interaction module in the planning module, the
predicted tracking bounding boxes as well as the planned trajectory. The navigation command is printed on the bottom left, and the HD
Map is rendered only for reference. From left to right, we show two consecutive frames in a time sequence but with different navigation
commands. We can observe that the planned trajectory varies largely according to the command. Also, much attention is paid to the goal
lane as well as the critical agents that are yielding to our ego vehicle.

Figure 9. Visualization for cruising around the urban areas. UniAD can generate high-quality interpretable perceptual and prediction
results, and make a safe maneuver. The first three columns show six camera views, and the last two columns are the predicted results and
the attention mask from the planning module respectively. Each agent is illustrated with a unique color. Only top-1 and top-3 trajectories
from motion forecasting are selected for visualization on images-view and BEV respectively.
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Figure 10. Critical case visualization. Here we demonstrate two critical cases. The first scenario (top) shows that the ego vehicle is
yielding to two pedestrians crossing the street, and the second scenario (down) shows that the ego vehicle is yielding to a fast-moving car
and waiting to go straight without protection near an intersection. We can observe that much attention is paid to the most critical agents,
i.e., pedestrians and fast-moving vehicles, as well as the intended goal location.

Figure 11. Obstacles avoidance visualization. In these two scenarios, the ego vehicle is changing lanes attentively to avoid the obstacle
vehicle. From the attention mask, we can observe that our method focuses on the obstacles as well as the road in the front and back.
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Figure 12. Visualization for planning recovering from perception failures. We show an interesting case where inaccurate results occur
in prior modules while the later tasks could still recover. The top row and the down row represent two consecutive frames from the same
scenario. The vehicle in the red circle is moving from a far distance toward the intersection at a high speed. It is observed that the tracking
module misses it at first, then captures it at the latter frame. The blue circles show a stationary car yielding to the traffic, and it is missed
in both frames. Interestingly, both vehicles show strong reactions to the attention masks of the planner, even though they are missed in
the prior modules. It means that our planner still pays attention to those critical though missed agents, which is intractable in previous
fragmented and non-unified driving systems, and demonstrates the robustness of UniAD.

Figure 13. Failure cases 1. Here we present a long-tail scenario, where a large trailer with a white container occupies the entire road. We
can observe that our tracking module fails to detect the accurate size of the front trailer and heading angles of vehicles beside the road.

Figure 14. Failure cases 2. In this case, the planner is over-cautious about the incoming vehicle in the narrow street. The dark environment
is one critical type of long-tail scenarios in autonomous driving. Applying smaller collision loss weight and more regulation regarding the
boundary might mitigate the problem.
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