
2 Carion et al.

transformer 
encoder-
decoder

CNN

set of box predictions bipartite matching loss

no object (ø) no object (ø)

set of image features

Fig. 1: DETR directly predicts (in parallel) the final set of detections by combining
a common CNN with a transformer architecture. During training, bipartite matching
uniquely assigns predictions with ground truth boxes. Prediction with no match should
yield a “no object” (?) class prediction.

We streamline the training pipeline by viewing object detection as a direct set
prediction problem. We adopt an encoder-decoder architecture based on trans-
formers [47], a popular architecture for sequence prediction. The self-attention
mechanisms of transformers, which explicitly model all pairwise interactions be-
tween elements in a sequence, make these architectures particularly suitable for
specific constraints of set prediction such as removing duplicate predictions.

Our DEtection TRansformer (DETR, see Figure 1) predicts all objects at
once, and is trained end-to-end with a set loss function which performs bipar-
tite matching between predicted and ground-truth objects. DETR simplifies the
detection pipeline by dropping multiple hand-designed components that encode
prior knowledge, like spatial anchors or non-maximal suppression. Unlike most
existing detection methods, DETR doesn’t require any customized layers, and
thus can be reproduced easily in any framework that contains standard CNN
and transformer classes.1.

Compared to most previous work on direct set prediction, the main features of
DETR are the conjunction of the bipartite matching loss and transformers with
(non-autoregressive) parallel decoding [29,12,10,8]. In contrast, previous work
focused on autoregressive decoding with RNNs [43,41,30,36,42]. Our matching
loss function uniquely assigns a prediction to a ground truth object, and is
invariant to a permutation of predicted objects, so we can emit them in parallel.

We evaluate DETR on one of the most popular object detection datasets,
COCO [24], against a very competitive Faster R-CNN baseline [37]. Faster R-
CNN has undergone many design iterations and its performance was greatly
improved since the original publication. Our experiments show that our new
model achieves comparable performances. More precisely, DETR demonstrates
significantly better performance on large objects, a result likely enabled by the
non-local computations of the transformer. It obtains, however, lower perfor-
mances on small objects. We expect that future work will improve this aspect
in the same way the development of FPN [22] did for Faster R-CNN.

Training settings for DETR di↵er from standard object detectors in mul-
tiple ways. The new model requires extra-long training schedule and benefits

1 In our work we use standard implementations of Transformers [47] and ResNet [15]
backbones from standard deep learning libraries.

Ñ¥ÉdtT↑?↑-Ñ%→☒i←> deodaqary

(3. Homo) ↳%nwl%)
Hw

Ground
1 NOM

¥"
truth

- ᵗ%dÑ

*_

•☒•*t



End-to-End Object Detection with Transformers 7

CNN

set of image features

transformer 
encoder

…

…

positional encoding

+ transformer 
decoder

class,
box

class,
box

no 
object

no 
object

FFN

FFN

FFN

FFN
object queries

backbone encoder decoder prediction heads

Fig. 2: DETR uses a conventional CNN backbone to learn a 2D representation of an
input image. The model flattens it and supplements it with a positional encoding before
passing it into a transformer encoder. A transformer decoder then takes as input a
small fixed number of learned positional embeddings, which we call object queries, and
additionally attends to the encoder output. We pass each output embedding of the
decoder to a shared feed forward network (FFN) that predicts either a detection (class
and bounding box) or a “no object” class.

Transformer decoder. The decoder follows the standard architecture of the
transformer, transforming N embeddings of size d using multi-headed self- and
encoder-decoder attention mechanisms. The di↵erence with the original trans-
former is that our model decodes the N objects in parallel at each decoder layer,
while Vaswani et al. [47] use an autoregressive model that predicts the output
sequence one element at a time. We refer the reader unfamiliar with the concepts
to the supplementary material. Since the decoder is also permutation-invariant,
the N input embeddings must be di↵erent to produce di↵erent results. These in-
put embeddings are learnt positional encodings that we refer to as object queries,
and similarly to the encoder, we add them to the input of each attention layer.
The N object queries are transformed into an output embedding by the decoder.
They are then independently decoded into box coordinates and class labels by
a feed forward network (described in the next subsection), resulting N final
predictions. Using self- and encoder-decoder attention over these embeddings,
the model globally reasons about all objects together using pair-wise relations
between them, while being able to use the whole image as context.

Prediction feed-forward networks (FFNs). The final prediction is com-
puted by a 3-layer perceptron with ReLU activation function and hidden dimen-
sion d, and a linear projection layer. The FFN predicts the normalized center
coordinates, height and width of the box w.r.t. the input image, and the lin-
ear layer predicts the class label using a softmax function. Since we predict a
fixed-size set of N bounding boxes, where N is usually much larger than the
actual number of objects of interest in an image, an additional special class la-
bel ? is used to represent that no object is detected within a slot. This class
plays a similar role to the “background” class in the standard object detection
approaches.

Auxiliary decoding losses. We found helpful to use auxiliary losses [1] in
decoder during training, especially to help the model output the correct number

N

N

(c, b)

random, initially



14 Carion et al.

Fig. 7: Visualization of all box predictions on all images from COCO 2017 val set
for 20 out of total N = 100 prediction slots in DETR decoder. Each box prediction is
represented as a point with the coordinates of its center in the 1-by-1 square normalized
by each image size. The points are color-coded so that green color corresponds to small
boxes, red to large horizontal boxes and blue to large vertical boxes. We observe that
each slot learns to specialize on certain areas and box sizes with several operating
modes. We note that almost all slots have a mode of predicting large image-wide boxes
that are common in COCO dataset.

simple ablations of di↵erent losses (using the same weighting every time), but
other means of combining them may achieve di↵erent results.

4.3 Analysis

Decoder output slot analysis In Fig. 7 we visualize the boxes predicted
by di↵erent slots for all images in COCO 2017 val set. DETR learns di↵erent
specialization for each query slot. We observe that each slot has several modes of
operation focusing on di↵erent areas and box sizes. In particular, all slots have
the mode for predicting image-wide boxes (visible as the red dots aligned in the
middle of the plot). We hypothesize that this is related to the distribution of
objects in COCO.

Generalization to unseen numbers of instances. Some classes in COCO
are not well represented with many instances of the same class in the same
image. For example, there is no image with more than 13 gira↵es in the training
set. We create a synthetic image3 to verify the generalization ability of DETR
(see Figure 5). Our model is able to find all 24 gira↵es on the image which
is clearly out of distribution. This experiment confirms that there is no strong
class-specialization in each object query.

4.4 DETR for panoptic segmentation

Panoptic segmentation [19] has recently attracted a lot of attention from the
computer vision community. Similarly to the extension of Faster R-CNN [37] to
Mask R-CNN [14], DETR can be naturally extended by adding a mask head on
top of the decoder outputs. In this section we demonstrate that such a head can
be used to produce panoptic segmentation [19] by treating stu↵ and thing classes

3 Base picture credit: https://www.piqsels.com/en/public-domain-photo-jzlwu

Semantic classes can be either things (objects with a well-defined shape, e.g. car, person) or stuff (amorphous 
background regions, e.g. grass, sky).

semantic segmentation + instance segmentation

20 obj queries they learned

also cooperating each other by self attn 
(But, one box for each obj) 

1☒i☒=¥iéi
[④↑- N



In contrast, TrackFormer casts the entire tracking objec-
tive into a single set prediction problem, applying attention
not only for the association step. It jointly reasons about
track initialization, identity, and spatio-temporal trajecto-
ries. We only rely on feature-level attention and avoid addi-
tional graph optimization and appearance/motion models.

3. TrackFormer

We present TrackFormer, an end-to-end trainable multi-
object tracking (MOT) approach based on an encoder-
decoder Transformer [50] architecture. This section de-
scribes how we cast MOT as a set prediction problem and
introduce the new tracking-by-attention paradigm. Further-
more, we explain the concept of track queries and their ap-
plication for frame-to-frame data association.

3.1. MOT as a set prediction problem

Given a video sequence with K individual object iden-
tities, MOT describes the task of generating ordered tracks
Tk = (bkt1 , b

k
t2 , . . . ) with bounding boxes bt and track iden-

tities k. The subset (t1, t2, . . . ) of total frames T indicates
the time span between an object entering and leaving the
the scene. These include all frames for which an object is
occluded by either the background or other objects.

In order to cast MOT as a set prediction problem, we
leverage an encoder-decoder Transformer architecture. Our
model performs online tracking and yields per-frame object
bounding boxes and class predictions associated with iden-
tities in four consecutive steps:

(i) Frame-level feature extraction with a common CNN
backbone, e.g., ResNet-50 [17].

(ii) Encoding of frame features with self-attention in a
Transformer encoder [50].

(iii) Decoding of queries with self- and encoder-decoder at-
tention in a Transformer decoder [50].

(iv) Mapping of queries to box and class predictions using
multilayer perceptrons (MLP).

Objects are implicitly represented in the decoder queries,
which are embeddings used by the decoder to output bound-
ing box coordinates and class predictions. The decoder al-
ternates between two types of attention: (i) self-attention
over all queries, which allows for joint reasoning about
the objects in a scene and (ii) encoder-decoder attention,
which gives queries global access to the visual information
of the encoded features. The output embeddings accumu-
late bounding box and class information over multiple de-
coding layers. The permutation invariance of Transformers
requires additive feature and object encodings for the frame
features and decoder queries, respectively.

3.2. Tracking-by-attention with queries

The total set of output embeddings is initialized with two
types of query encodings: (i) static object queries, which
allow the model to initialize tracks at any frame of the video,
and (ii) autoregressive track queries, which are responsible
for tracking objects across frames.

The simultaneous decoding of object and track queries
allows our model to perform detection and tracking in a uni-
fied way, thereby introducing a new tracking-by-attention

paradigm. Different tracking-by-X approaches are defined
by their key component responsible for track generation.
For tracking-by-detection, the tracking is performed by
computing/modelling distances between frame-wise object
detections. The tracking-by-regression paradigm also per-
forms object detection, but tracks are generated by regress-
ing each object box to its new position in the current frame.
Technically, our TrackFormer also performs regression in
the mapping of object embeddings with MLPs. However,
the actual track association happens earlier via attention in
the Transformer decoder. A detailed architecture overview
which illustrates the integration of track and object queries
into the Transformer decoder is shown in the appendix.

Track initialization. New objects appearing in the scene
are detected by a fixed number of Nobject output embeddings
each initialized with a static and learned object encoding
referred to as object queries [7]. Intuitively, each object
query learns to predict objects with certain spatial proper-
ties, such as bounding box size and position. The decoder
self-attention relies on the object encoding to avoid dupli-
cate detections and to reason about spatial and categorical
relations of objects. The number of object queries is ought
to exceed the maximum number of objects per frame.

Track queries. In order to achieve frame-to-frame track
generation, we introduce the concept of track queries to the
decoder. Track queries follow objects through a video se-
quence carrying over their identity information while adapt-
ing to their changing position in an autoregressive manner.

For this purpose, each new object detection initializes
a track query with the corresponding output embedding of
the previous frame. The Transformer encoder-decoder per-
forms attention on frame features and decoder queries con-

tinuously updating the instance-specific representation of an
object‘s identity and location in each track query embed-
ding. Self-attention over the joint set of both query types al-
lows for the detection of new objects while simultaneously
avoiding re-detection of already tracked objects.

In Figure 2, we provide a visual illustration of the track
query concept. The initial detections in frame t = 0
spawn new track queries following their corresponding ob-
jects to frame t and beyond. To this end, Nobject ob-

8846

DETR

✓

m

obj quay
: learn

(track query: auto
repair

Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: Multiobject 
tracking with transformers. CVPR 2022



X X XX XX XXX<latexit sha1_base64="bWcAvIskIFH6M//q7BF22uy7w4o=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KklB9FjoxVOpaD+gDWWz3bRLN5uwOxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkQKg6777Wxsbm3v7Bb2ivsHh0fHpZPTtolTzXiLxTLW3YAaLoXiLRQoeTfRnEaB5J1gUp/7nSeujYjVI04T7kd0pEQoGEUrPdQbjUGp7FbcBcg68XJShhzNQemrP4xZGnGFTFJjep6boJ9RjYJJPiv2U8MTyiZ0xHuWKhpx42eLU2fk0ipDEsbalkKyUH9PZDQyZhoFtjOiODar3lz8z+ulGN76mVBJilyx5aIwlQRjMv+bDIXmDOXUEsq0sLcSNqaaMrTpFG0I3urL66RdrXjXFfe+Wq65eRwFOIcLuAIPbqAGd9CEFjAYwTO8wpsjnRfn3flYtm44+cwZ/IHz+QPISo1n</latexit>

CNN
<latexit sha1_base64="bWcAvIskIFH6M//q7BF22uy7w4o=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KklB9FjoxVOpaD+gDWWz3bRLN5uwOxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkQKg6777Wxsbm3v7Bb2ivsHh0fHpZPTtolTzXiLxTLW3YAaLoXiLRQoeTfRnEaB5J1gUp/7nSeujYjVI04T7kd0pEQoGEUrPdQbjUGp7FbcBcg68XJShhzNQemrP4xZGnGFTFJjep6boJ9RjYJJPiv2U8MTyiZ0xHuWKhpx42eLU2fk0ipDEsbalkKyUH9PZDQyZhoFtjOiODar3lz8z+ulGN76mVBJilyx5aIwlQRjMv+bDIXmDOXUEsq0sLcSNqaaMrTpFG0I3urL66RdrXjXFfe+Wq65eRwFOIcLuAIPbqAGd9CEFjAYwTO8wpsjnRfn3flYtm44+cwZ/IHz+QPISo1n</latexit>

CNN
<latexit sha1_base64="bWcAvIskIFH6M//q7BF22uy7w4o=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KklB9FjoxVOpaD+gDWWz3bRLN5uwOxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkQKg6777Wxsbm3v7Bb2ivsHh0fHpZPTtolTzXiLxTLW3YAaLoXiLRQoeTfRnEaB5J1gUp/7nSeujYjVI04T7kd0pEQoGEUrPdQbjUGp7FbcBcg68XJShhzNQemrP4xZGnGFTFJjep6boJ9RjYJJPiv2U8MTyiZ0xHuWKhpx42eLU2fk0ipDEsbalkKyUH9PZDQyZhoFtjOiODar3lz8z+ulGN76mVBJilyx5aIwlQRjMv+bDIXmDOXUEsq0sLcSNqaaMrTpFG0I3urL66RdrXjXFfe+Wq65eRwFOIcLuAIPbqAGd9CEFjAYwTO8wpsjnRfn3flYtm44+cwZ/IHz+QPISo1n</latexit>

CNN

<latexit sha1_base64="V/WHVsl4AYMVKs6ih48AzugxW+w=">AAACFnicbVDLSsNAFJ34rPUVdekmWAQ3lqQguiyI4LJCX9CGMpnctENnJmFmIpTQr3Djr7hxoYhbceffOGmzqK0HBg7n3Dv33hMkjCrtuj/W2vrG5tZ2aae8u7d/cGgfHbdVnEoCLRKzWHYDrIBRAS1NNYNuIgHzgEEnGN/mfucRpKKxaOpJAj7HQ0EjSrA20sC+7BMQGmTenzUlFiqKJQc5LS8ad4LEoREHdsWtujM4q8QrSAUVaAzs734Yk5SbrwjDSvU8N9F+hqWmhIEZkipIMBnjIfQMFZiD8rPZWVPn3CihY/YxT2hnpi52ZJgrNeGBqeRYj9Syl4v/eb1URzd+RkWSahBkPihKmaNjJ8/ICakEotnEEEwkNbs6ZIQlJiYPVTYheMsnr5J2repdVd2HWqXuFnGU0Ck6QxfIQ9eoju5RA7UQQU/oBb2hd+vZerU+rM956ZpV9JygP7C+fgFmjKC0</latexit>

Transformer
Encoder

<latexit sha1_base64="V/WHVsl4AYMVKs6ih48AzugxW+w=">AAACFnicbVDLSsNAFJ34rPUVdekmWAQ3lqQguiyI4LJCX9CGMpnctENnJmFmIpTQr3Djr7hxoYhbceffOGmzqK0HBg7n3Dv33hMkjCrtuj/W2vrG5tZ2aae8u7d/cGgfHbdVnEoCLRKzWHYDrIBRAS1NNYNuIgHzgEEnGN/mfucRpKKxaOpJAj7HQ0EjSrA20sC+7BMQGmTenzUlFiqKJQc5LS8ad4LEoREHdsWtujM4q8QrSAUVaAzs734Yk5SbrwjDSvU8N9F+hqWmhIEZkipIMBnjIfQMFZiD8rPZWVPn3CihY/YxT2hnpi52ZJgrNeGBqeRYj9Syl4v/eb1URzd+RkWSahBkPihKmaNjJ8/ICakEotnEEEwkNbs6ZIQlJiYPVTYheMsnr5J2repdVd2HWqXuFnGU0Ck6QxfIQ9eoju5RA7UQQU/oBb2hd+vZerU+rM956ZpV9JygP7C+fgFmjKC0</latexit>

Transformer
Encoder

<latexit sha1_base64="V/WHVsl4AYMVKs6ih48AzugxW+w=">AAACFnicbVDLSsNAFJ34rPUVdekmWAQ3lqQguiyI4LJCX9CGMpnctENnJmFmIpTQr3Djr7hxoYhbceffOGmzqK0HBg7n3Dv33hMkjCrtuj/W2vrG5tZ2aae8u7d/cGgfHbdVnEoCLRKzWHYDrIBRAS1NNYNuIgHzgEEnGN/mfucRpKKxaOpJAj7HQ0EjSrA20sC+7BMQGmTenzUlFiqKJQc5LS8ad4LEoREHdsWtujM4q8QrSAUVaAzs734Yk5SbrwjDSvU8N9F+hqWmhIEZkipIMBnjIfQMFZiD8rPZWVPn3CihY/YxT2hnpi52ZJgrNeGBqeRYj9Syl4v/eb1URzd+RkWSahBkPihKmaNjJ8/ICakEotnEEEwkNbs6ZIQlJiYPVTYheMsnr5J2repdVd2HWqXuFnGU0Ck6QxfIQ9eoju5RA7UQQU/oBb2hd+vZerU+rM956ZpV9JygP7C+fgFmjKC0</latexit>

Transformer
Encoder

<latexit sha1_base64="1HSo0US2Liq0DbsE5UFWkS4BZ58=">AAACFnicbVDLSsNAFJ34rPUVdekmWAQ3lqQguizowmWFvqANZTK5aYfOTMLMRCihX+HGX3HjQhG34s6/cdJmUVsPDBzOuXfuvSdIGFXadX+stfWNza3t0k55d2//4NA+Om6rOJUEWiRmsewGWAGjAlqaagbdRALmAYNOML7N/c4jSEVj0dSTBHyOh4JGlGBtpIF92ScgNMi8P2tKLFQUSw5yWl407oDEoREHdsWtujM4q8QrSAUVaAzs734Yk5SbrwjDSvU8N9F+hqWmhIEZkipIMBnjIfQMFZiD8rPZWVPn3CihY/YxT2hnpi52ZJgrNeGBqeRYj9Syl4v/eb1URzd+RkWSahBkPihKmaNjJ8/ICakEotnEEEwkNbs6ZIQlJiYPVTYheMsnr5J2repdVd2HWqXuFnGU0Ck6QxfIQ9eoju5RA7UQQU/oBb2hd+vZerU+rM956ZpV9JygP7C+fgFXJ6Cq</latexit>

Transformer
Decoder

<latexit sha1_base64="1HSo0US2Liq0DbsE5UFWkS4BZ58=">AAACFnicbVDLSsNAFJ34rPUVdekmWAQ3lqQguizowmWFvqANZTK5aYfOTMLMRCihX+HGX3HjQhG34s6/cdJmUVsPDBzOuXfuvSdIGFXadX+stfWNza3t0k55d2//4NA+Om6rOJUEWiRmsewGWAGjAlqaagbdRALmAYNOML7N/c4jSEVj0dSTBHyOh4JGlGBtpIF92ScgNMi8P2tKLFQUSw5yWl407oDEoREHdsWtujM4q8QrSAUVaAzs734Yk5SbrwjDSvU8N9F+hqWmhIEZkipIMBnjIfQMFZiD8rPZWVPn3CihY/YxT2hnpi52ZJgrNeGBqeRYj9Syl4v/eb1URzd+RkWSahBkPihKmaNjJ8/ICakEotnEEEwkNbs6ZIQlJiYPVTYheMsnr5J2repdVd2HWqXuFnGU0Ck6QxfIQ9eoju5RA7UQQU/oBb2hd+vZerU+rM956ZpV9JygP7C+fgFXJ6Cq</latexit>

Transformer
Decoder

<latexit sha1_base64="1HSo0US2Liq0DbsE5UFWkS4BZ58=">AAACFnicbVDLSsNAFJ34rPUVdekmWAQ3lqQguizowmWFvqANZTK5aYfOTMLMRCihX+HGX3HjQhG34s6/cdJmUVsPDBzOuXfuvSdIGFXadX+stfWNza3t0k55d2//4NA+Om6rOJUEWiRmsewGWAGjAlqaagbdRALmAYNOML7N/c4jSEVj0dSTBHyOh4JGlGBtpIF92ScgNMi8P2tKLFQUSw5yWl407oDEoREHdsWtujM4q8QrSAUVaAzs734Yk5SbrwjDSvU8N9F+hqWmhIEZkipIMBnjIfQMFZiD8rPZWVPn3CihY/YxT2hnpi52ZJgrNeGBqeRYj9Syl4v/eb1URzd+RkWSahBkPihKmaNjJ8/ICakEotnEEEwkNbs6ZIQlJiYPVTYheMsnr5J2repdVd2HWqXuFnGU0Ck6QxfIQ9eoju5RA7UQQU/oBb2hd+vZerU+rM956ZpV9JygP7C+fgFXJ6Cq</latexit>

Transformer
Decoder

Figure 2. TrackFormer casts multi-object tracking as a set prediction problem performing joint detection and tracking-by-attention. The
architecture consists of a CNN for image feature extraction, a Transformer [50] encoder for image feature encoding and a Transformer
decoder which applies self- and encoder-decoder attention to produce output embeddings with bounding box and class information. At
frame t = 0, the decoder transforms Nobject object queries (white) to output embeddings either initializing new autoregressive track queries

or predicting the background class (crossed). On subsequent frames, the decoder processes the joint set of Nobject +Ntrack queries to follow
or remove (blue) existing tracks as well as initialize new tracks (purple).

ject queries (white) are decoded to output embeddings for
potential track initializations. Each valid object detec-
tion {b00, b

1
0, . . . } with a classification score above �object,

i.e., output embedding not predicting the background class
(crossed), initializes a new track query embedding. Since
not all objects in a sequence appear on the first frame, the
track identities Kt=0 = {0, 1, . . . } only represent a sub-
set of all K. For the decoding step at any frame t > 0,
track queries initialize additional output embeddings asso-
ciated with different identities (colored). The joint set of
Nobject +Ntrack output embeddings is initialized by (learned)
object and (temporally adapted) track queries, respectively.

The Transformer decoder transforms the entire set of
output embeddings at once and provides the input for the
subsequent MLPs to predict bounding boxes and classes for
frame t. The number of track queries Ntrack changes be-
tween frames as new objects are detected or tracks removed.
Tracks and their corresponding query can be removed ei-
ther if their classification score drops below �track or by
non-maximum suppression (NMS) with an IoU threshold of
�NMS. A comparatively high �NMS only removes strongly
overlapping duplicate bounding boxes which we found to
not be resolvable by the decoder self-attention.

Track query re-identification. The ability to decode an
arbitrary number of track queries allows for an attention-
based short-term re-identification process. We keep decod-
ing previously removed track queries for a maximum num-
ber of Ttrack-reid frames. During this patience window, track
queries are considered to be inactive and do not contribute
to the trajectory until a classification score higher than
�track-reid triggers a re-identification. The spatial information
embedded into each track query prevents their application
for long-term occlusions with large object movement, but,

nevertheless, allows for a short-term recovery from track
loss. This is possible without any dedicated re-identification
training; and furthermore, cements TrackFormer’s holistic
approach by relying on the same attention mechanism as
for track initialization, identity preservation and trajectory
forming even through short-term occlusions.

3.3. TrackFormer training

For track queries to work in interaction with object
queries and follow objects to the next frame, TrackFormer
requires dedicated frame-to-frame tracking training. As in-
dicated in Figure 2, we train on two adjacent frames and
optimize the entire MOT objective at once. The loss for
frame t measures the set prediction of all output embed-
dings N = Nobject + Ntrack with respect to the ground truth
objects in terms of class and bounding box prediction.

The set prediction loss is computed in two steps:

(i) Object detection on frame t � 1 with Nobject object
queries (see t = 0 in Figure 2).

(ii) Tracking of objects from (i) and detection of new ob-
jects on frame t with all N queries.

The number of track queries Ntrack depends on the number
of successfully detected objects in frame t�1. During train-
ing, the MLP predictions ŷ = {ŷj}Nj=1 of the output embed-
dings from step (iv) are each assigned to one of the ground
truth objects y or the background class. Each yi represents
a bounding box bi, object class ci and identity ki.

Bipartite matching. The mapping j = ⇡(i) from ground
truth objects yi to the joint set of object and track query pre-
dictions ŷj is determined either via track identity or costs
based on bounding box similarity and object class. For the

8847

step (ii)?

k+x
=10,8,4.4 k=(P.R,G3
Wi

im
, Track ang...

Q 3. occlusion

·
Track augmentation

Lobj queries C outputembeddingare
2. missing
detection

-2

concatenation?


