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Abstract—Computationally expensive rendering of virtual 3D
objects in mixed reality applications of lightweight AR glasses
can be performed by a remotely connected external server.
However, nonnegligible 6DOF pose error caused by the remote
rendering latency results in 3D visual inconsistency which can
be hardly removed by 2D image correction using IMU. In this
paper, we propose a novel 6DOF pose prediction algorithm based
on learnable combination of consistent motion model and deep
prediction. We formulate the combination of both as controlled
residual learning and model ensemble. We build a dataset and
demonstrate that our algorithm provides accurate prediction
under 200ms.

Index Terms—augmented reality, mixed reality, AR glasses,
6-DOF pose prediction, deep learning

I. INTRODUCTION

Both augmented reality (AR) and virtual reality (VR) are
essential components of metaverse. While VR immerses a user
in a totally virtual world with near-eye displays, AR overlays
the virtual world on a real world. Also, the extended version
of AR, namely mixed reality (MR), presents mixture of both
virtual and real worlds [1] tightly sharing 3D spatial relation-
ship. AR glasses are a pair of near-eye transparent displays
for AR/MR applications. A user wearing the AR glasses can
directly see through the displays, and simultaneously observe
virtual objects rendered on the displays.

In AR/VR systems, latency is important to the quality of
user experience. To realistically display a stationary virtual ob-
ject in a real scene, the 6DOF pose (position and orientation) at
each time is necessary. To this end, simultaneous localization
and mapping (SLAM) [2]-[6] algorithms are used to estimate
the pose and partial 3D geometry of the real scene, but there
inevitably occurs time delay between the estimated pose and
the real pose.

For the displays of mobile phones, the latency problem is
easily solved by slightly delaying video frames to use the pose
estimate of the exact time instant. On the other hand, a VR
360° video streaming system predicts the pose over several
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Fig. 1. Our scenario: For lightweight AR glasses, our prediction algorithm
predicts a future pose to pre-render an image of virtual objects in external
servers.

seconds to load the video data in advance. Unlike short-term
prediction algorithms for low latency under 50ms, it is possible
to utilize more complex deep learning architectures including
convolutional neural networks to process video frames [7]—[9]
or a prior saliency prediction [10]. Also, other approaches [8],
[11] formulate residual learning for gaze point prediction.

In the case of AR glasses, a future pose is predicted to
render virtual objects, and then, the pre-rendered image is
corrected by another prediction from the latest pose estimation
using an inertial measurement unit (IMU). Using local ren-
dering such as in self-contained AR glasses, both predictions
are reasonably accurate so that the perception of the latency
is negligible except for unusual motion. However, the AR
glasses assisted by the remote rendering require more accurate
prediction for longer latency. The actual pose difference caused
by the longer latency results in irremovable 3D registration
error of virtual objects, even though the image correction using
2D transformation is applied.

In this paper, we propose a novel 6-DOF pose prediction al-
gorithm for the latency around 150ms, for the lightweight AR
glasses which receive pre-rendered images according to the
predicted pose. While conventional pose prediction algorithms
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Fig. 2. Our system for AR glasses: Entire data flow of spatially aware
applications using remote rendering in lightweight wireless AR glasses.
Wherever the pose estimation is performed, the IMU integration can provide
the latest pose to the pose prediction. The image is rendered by the predicted
pose in the external server and corrected by the IMU integration in AR glasses.

for short-term under 50ms use a basic motion model assuming
consistency of motion, two recent studies [12], [13] adopt
deep learning based prediction models for a low-latency pre-
rendering VR system using an external tracking device. They
compare two motion models and two deep models for 6DOF
head pose prediction with varying latency under 50ms. Com-
pared to the deep models, the consistent motion model also
shows comparable results for orientation prediction. Therefore,
we also utilize the consistent motion model and propose a
learnable combination of the consistent motion model and a
deep model which is also learnable. We extend the simple
combination by adding two predicted motions in two different
ways. First, we formulate a residual learning controlled by
fixed but learnable weighting parameters. Second, we re-
formulate it as the weighted ensemble of the motion model and
the uncontrolled residual deep model. Then, a shallow network
learns the combination weights from the latest prediction error
on a constraint that each component of the weights should be
in the range of [0, 1]. Also, all components of 6-DOF motion
in every prediction term are assigned with their respective
combination weights determined by the network.

We build a dataset of head motion sequences using a stereo
camera and an IMU attached to prototype AR glasses. Then,
we perform experiments by simulating a scenario that the AR
glasses are connected to an external server such as a paired
mobile device, or even a cloud service. Our experimental
results show that our learnable combination model improves
the prediction accuracy, compared with the consistent motion
model and other possible variations of combination.

II. PRELIMINARIES

In this section, we present a desired scenario as shown in
Fig.2 and related existing pose prediction algorithms.

A. Scenario

Due to the rendering latency of most AR/VR devices, 33ms
for 30 fps videos, or less than 50ms is a typical maximum
prediction term, whereas the wireless communication latency
could be around 100ms and inconsistent due to the unstable
channel. Although the accurate pose estimation using visual

sensors also has non-negligible latency, the latency can be ex-
cluded from the prediction term, because the IMU integration
can provide the latest pose, whether the pose estimation is
done in the AR glasses or the external server. Thus, the total
prediction term in our scenario is assumed to be about 150ms.

To display a virtual scene, the image is pre-rendered in
the external server and transmitted to the AR glasses. Unless
multiple images are pre-rendered simultaneously, a single pose
prediction is performed. Thus, our prediction result has no
need to be a multimodal distribution but covers diverse time
intervals.

Also, we assume that an image-level correction algorithm
transforms the pre-rendered image by using the latest pose
from the IMU integration and a simple prediction over few
milliseconds. Thanks to the low computational cost of the IMU
integration and 2D transformation, it can be performed in the
AR glasses to remove jitters. Though both the glasses and
the server can afford the prediction algorithm, we assume that
the prediction algorithm is performed in the external server to
reduce computational overhead of the glasses.

B. IMU based prediction

General pose prediction models can be classified with their
target motions and sensor usages. For AR glasses, head motion
can be predicted using an IMU sensor. Incorporated with a
visual SLAM algorithm, IMU can provide reasonably accurate
estimates of current pose by integrating the measurement of
acceleration and angular velocity from a given accurate initial
velocity and sensor bias [14]. Also, the estimates can be
extrapolated to predict future poses and motions. For example,
a constant motion model is typically used for acceleration and
angular velocity from the raw IMU measurement.

III. METHOD

In this section, we propose a long-term prediction algorithm
which is a learnable combination of a consistent motion model
and a deep prediction. The motion model is the same as the
IMU based prediction model which assumes the consistency
of acceleration and angular velocity. The overall architecture
is presented in Fig.3.

A. Deep motion prediction

The deep architecture learns motion prediction from the tra-
jectory which is the sequence of previous poses and motions.
Recurrent neural network (RNN) [15]-[17] is appropriate to
process the sequential data and extrapolate the sequence.
The duration of informative input trajectory is tightly set
to the maximum prediction term about 200ms. Using the
IMU measurement, however, the trajectory has relatively high
frequency for RNN to process every single time point in a
given window. Instead, we divide the window into four non-
overlapping subsequences and let the network process the
sequence of the four subsequences to maintain proper length
and dimension for both computational efficiency and training
stability. In detail, the input window in Fig.3 consists of the
four vectorized subsequences of consecutive ten time points
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including position, orientation, velocity, angular velocity, and
acceleration. Also, all the poses and motions in the window are
defined relatively from the very first ones so that the inputs of
the network are appropriately regularized for generalization.

The outputs of the network are also regularized as above, but
the prediction type should be chosen between pose and motion
unlike the input, because the correlation between them is
difficult to be constrained implicitly in the network. Actually,
we choose the same with the consistent motion model, i.e.,
as the motion model assumes the consistency of acceleration
and angular velocity. The outputs of the prediction model also
retrieve acceleration and angular velocity.

Even though highly deep features are not essential, a simple
single layer RNN is insufficient to learn hidden motion pat-
terns in the trajectory. To this end, we adopt a stacked structure
which is cascaded recurrent neural units to extract deep
sequential features. Another adaptation for motion prediction
is to choose a leaky ReLU [18] activation function to make
nonlinear hidden states behave more like physical features.

Formulating a residual learning for motion prediction, the
output does not correspond to the actual motion but the
residual of prediction and consistent motion. Note that the
consistent motion represents the motion input at the latest time
point. This formulation can be written as below:

my g = my + af (X< 0), (D

where m; is the motion at discrete time ¢, m;, 4 is predicted
motion at the time after prediction term dt, f is the stacked
RNN with parameter 6, and X <; is the input window including
previous poses and motions. An additional parameter vector o
can explicitly control how the model believes the consistency
of the motion. For example, if « is a zero vector, the model is
equivalent to the consistent motion model. The set of control
parameters « is assigned to not only the prediction term dt
but also to each component of motion such as the respective
axes of acceleration or angular velocity. Also, the parameter
« can be jointly learned with the network parameters 6.

B. Learnable combination

The residual learning of motion prediction with the control
parameter « in Eq.(1) can be interpreted as an ensemble of the
linear combination of the consistent motion model and another
prediction as below:

m; + of (X< 0) = (1 — a)my + a(m,; + (X< 0)). (2)

Thus, the combination weights ¢ balance between simple but
stable prediction and more complex learned prediction, if its
components are between 0 and 1. Every motion component
of each prediction term has the respective weight just like the
formulation of residual learning in Eq.(1).

Also, we can extend the fixed weights to be learned from
plausible clues using a neural network. To this end, we adopt
a multi-layer perceptron (MLP) [19] and use the information
from the latest prediction result available. Specifically, we
compute the difference between the predicted motion and the
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Fig. 3. Our network architecture: Learnable weighted combination of con-
sistent motion model and deep motion prediction. The input window consists
of four non-overlapping partitions of recent poses and motions. The learned
motion is the sum of the consistent motion and the residual, and it is combined
again with the consistent motion. The learnable combination weights are
determined by the prediction error between the latest motion prediction and
its corresponding motion in the input window.

estimated motion at the same time point in the input window
as below:

o = g([ﬁ’lt/ - mt’]tlgt 5 (b)a 3)

where g is the MLP network with parameter ¢.

C. Training procedure

The deep architecture in Fig. 3 is trained in a self-supervised
manner, because additional annotation for future pose and
motion is not necessary. The ground truth is easily obtained
by any trajectory, if it can be estimated accurately by well-
designed pose estimation algorithms [2]-[6]. While a lot of
sequences have a small amount of sawtooth error caused
by the IMU integration, it is sufficiently smaller than the
prediction errors and does not induce the differential noise
in the sequence of motion.

Because of two incompatible objectives for translation and
rotation, the two errors should be appropriately merged to
define both an evaluation metric and a loss function. Also, the
errors are computed at the multiple prediction terms so that
it is not trivial to train and evaluate the model. Fortunately,
however, each of the various prediction terms shows similar
tendency and a hyper-parameter A(> 0) balancing between
the translation and rotation is sufficient to control the training
procedure properly. Therefore, the loss function is defined as
below:

L([(l’flt/,mt/)] t<t,) = Z A'f)t’ - pt" + ‘élt’ —qy |a 4)
t<t’
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Fig. 4. Trajectory and rotation in one sequence: (a) Trajectory of a sequence
taken when a person is walking while seeing multiple AR objects. (b) Yaw,
pitch and roll of the trajectory in (a).

@)

Fig. 5. Example of a mixed scene: (a) Two virtual colored spheres. (b)
Mixing the virtual spheres with a real desk scene. Note that the image in (b)
is captured by a camera in the position of a right eye.

where m; = (P,, q,) is the predicted motion which consists of
translation and rotation, and m; = (p,, q,) is its correspond-
ing ground truth. Note that the rotation error is denoted as
l1-norm because we present the rotation with the Euler vector
of which magnitude and direction encode the angle and axis
of the rotation, respectively.

IV. EXPERIMENT

In this section, we describe several experiments using our
own dataset based on simulated settings for the desired sce-
nario. The details of the dataset and the implementation are
described. Also, we investigate the evaluation results of the
variations of prediction algorithms. Our prediction methods
yield better prediction accuracy than baseline methods.

A. Dataset

Our dataset consists of total 24 sequences each of which
duration is about 70 seconds. We use 18 sequences for
training, remaining 6 sequences for test, respectively. For
each sequence, a user wearing AR glasses observes one or
more virtual objects, moving freely while sitting or walking
around the virtual objects. The sequences were taken while
different users are wearing AR glasses, differing also in the
number, size, location, and movement of the virtual objects.
An exemplary trajectory of the head motion is shown in Fig.4
and a mixed scene is shown in Fig.5.

B. Implementation

We use Intel Realsense T265 device [20] including a stereo
camera and an IMU sensor and a prototype of AR glasses.
Also, we use extended Kalman filter-based SLAM [21], which
is modified not to include global optimization for delayed pose
estimation, because it is efficient and quite accurate within
100ms.

For deep learning, we utilize an Nvidia RTX 1080Ti GPU
and python TensorFlow library for training and quantitative
evaluation, but we re-implement optimal C++ code to in-
corporate the prediction algorithm with the other part of
implementation for AR glasses.

The stacked RNN has three LSTMs of which hidden state
has 200, 200 and 6 units, respectively. Also, the network can
be more lightweight without severe degradation. For example,
a shallow and narrow network using simple RNN cells also
works well. As described in Section III-A, each input sequence
has four groups of ten time points and the smaller slope of the
leaky ReLU is set to 0.5. For the training hyper-parameters,
we set the learning rate to 5 x 10~ and the hyper-parameter
for the loss function in Eq.(4) to 0.04.

C. Evaluation

For quantitative evaluation, we calculate the prediction
errors of various possible methods using the ground truth
poses estimated by the SLAM algorithm. ‘No prediction’
refers to using previous pose so that the result is equivalent to
the magnitude of pose variation. ‘Consistent motion model’
assumes the consistency of both acceleration and angular
velocity which are obtained by the IMU sensor. ‘Deep (w/o
consistent motion model)’ is a single deep prediction model
not combined with the consistent motion model.

‘Residual learning (fixed o)’ learns the controllable residual
of the consistent model so that there is no constraint on
the control parameter o in Eq.(1). ‘Learnable combination
(adaptive o)’ adopts the formulation that all components of
the combination weights are computed by the network and
constrained to be within the interval [0, 1].

Also, in order to investigate the capacity of the network,
‘Learnable comb. (narrow)’ uses a narrow network with the
half number of the hidden units, and ‘Learnable comb. (shal-
low)’ omits one of the hidden layers.

TABLE I
PREDICTION ERRORS FOR 100, 150 AND 200MS

Method Translation (mm) Rotation (deg)

No prediction 11.364 / 16.930 / 22.435 2.338/3.475/ 4.591

Consistent motion model 2.312/4.336/7.284 0.560 / 1.104 / 1.758

Deep (w/o consistent motion model) 2.382/4.242/ 6.676 1.194 / 1.896 / 2.663

Residual learning (fixed o) 2.258 / 4.005 / 6.337 0.519 / 1.037 / 1.666

Learnable combination (adaptive o) 2.273 / 4.047 / 6.417 0.509 / 1.015 / 1.632

Learnable comb. (narrow) 2.276 / 4.101 / 6.605 0.519 / 1.034 / 1.657

Learnable comb. (shallow) 2.253 / 4.003 / 6.338 0.518 / 1.025 / 1.651
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In Table.l, various prediction methods are compared using
their prediction errors for 100ms, 150ms, and 200ms, respec-
tively. We can see that our learnable combination yields the
performance gains with respect to the two errors of translation
and rotation. Since the translation is predicted from the initial
velocity and the predicted acceleration, various algorithms
show comparable results in short prediction terms where the
initial velocity can play a major role. Since the rotation is
typically more dominant while wearing AR glasses, the result
seems suitable for our scenario.

D. Discussion

To improve the prediction performance, we propose a per-
sonalization framework which allows additional training for
personal trajectory data. Since the ground truth trajectory can
be obtained without annotation, we can train the customized
neural network for each user who wears the AR glasses for
sufficient time around several minutes.

To this end, we simply test on the sequence of which user is
identical to one of the users in training dataset. The results can
be interpreted as an upper bound of prediction performance
where the sophisticated online learning or incremental learn-
ing algorithms are utilized. Also, this simple personalization
method is possible if the training is performed in an external
server.

Table.Il shows the personalization results using our learn-
able combination architecture. Note that the dataset is cate-
gorized differently from that of Table.I. ‘Consistent motion
model’ does not require the training and personalization. ‘No
personal data’ uses the training data of other users rather
than the test user. ‘Only personal data’ utilizes only the test
user’s training data, and "Mixed data’ uses all available training
dataset.

From the results, ‘Mixed data’ shows the best results but
‘No personal data’ has better results than ‘Only personal data’.
On the other hand, these results are simply in order of the
amount of data. Whether the performance is largely dependent
on the amount of data, it would be best to use mixed dataset
if possible.

V. CONCLUSION

Assuming that AR glass is assisted by remote rendering
to present spatially aware virtual objects, we have proposed
a prediction algorithm to reduce the visual inconsistency
caused by the latency of the remote rendering. However,

TABLE II
PERSONALIZED PREDICTION ERRORS FOR 100, 150 AND 200MS

Method Translation (mm) Rotation (deg)

No prediction 15.341 / 22.867 / 30.301 3.117 / 4.644 1 6.143

Consistent motion model 2.842/5.393 / 9.09 0.716 / 1.455 / 2.398

No personal data 2.759 / 4.925 / 7.809 0.562 / 1.312/ 2.144

Only personal data 2.809 / 5.260 / 8.765 0.644 / 1.309 / 2.155

Mixed data

2.753 / 4.891 / 7.724 0.636 / 1.281 / 2.101

the prediction performance should be further enhanced to
satisfy commercial requirements of user experience, despite
the challenging nature of the prediction task. Thus, we plan to
develop more sophisticated prediction algorithms, for example,
using additional input modalities such as latest images to
extract scene dependency or online learning to adapt user-
specific patterns.
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