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Motion Estimation using Regions
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ABSTRACT

We present a two step approach for estimating the motion and structure parameters from region correspondences

in two frames. Given four or more region correspondences on the same planar surface, the motion and planar orient-

ation parameters are first linearly estimated based on second-order approximation of the displacement field of the

image plane. Then, using this linear estimate as an initial guess, a nonlinear estimate is obtained by iteratively

minimizing an objective function using the exact expression of the displacement field. The objective function in-

volves the centroids of corresponding regions and relationships among low-order moments. Through simulations, we

show that the two-step region-based approach gives robust estimates. The performance of nonlinear region-based est-

imation is compared with that of linear region-based and point-based methods. Experimental results for two image

pairs, one synthetic and one real, are presented to show the practical applicability of our approach.

I. Introduction

This paper is concerned with estimation of motion
and structure parameters using image regions as feat-
ures, given their correspondences in an image pair.
Compared to point features which are commonly used
[1]1, macro features such as lines and regions [2, 3,
4, 5, 7] if available are less sensitive to quantization
noise and are easier to match than points. Further, it
is desirable to use region-based motion estimation for
efficient MPEG-4 shape coding [8].

Several region-based approaches have been proposed.
Kanatani [3] developed a method for computing the
motion parameters for scenes with known initial str-
ucture; his method is based on the values of certain
integrals computed on one planar region under the
assumption that the motion is infinitesimal. Wu et al.
[4] proposed an iterative method based on optical flow
on a contour. However, it is generally difficult to ex-
tract reliable region contours from a pair of noisy ima-
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ges. It was reported that the method usually conver-
ges if the maximal motion is smaller than a thres-
hold related to the contour size. Some of the recent
methods such as [7] minimize the displaced pixel dif-
ference with respect to 6 affine parameters, but these
methods are not computationally efficient since they
should scan the whole pixels inside the regions of in-
terest when they compute the partial derivatives with
respect to each parameter during the minimization.

In this paper, we present a two-step approach for
estimating the motion and structure parameters for
planar surfaces from region correspondences in two
views. We use region correspondences instead of com-
monly used point features because regions are more
robust features than points: being smaller in number,
they are easier to match; they have more measurable
properties than points (which are characterized only by
their positions); and, in some images, it is difficult to
extract good point features (e.g., see Figs. 5 and 6).

In the first step of our algorithm (which was par-
tially presented in [5]), the motion and planar orient-
ation parameters are linearly estimated by approximat-
ing the displacement field of the image plane corre-
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sponding to each rigid planar patch by the second-
order polynomials. In the second step, using the linear
estimate as an initial guess, a nonlinear but accurate
estimate is obtained by iteratively minimizing the
objective function using the exact expression of the
displacement field. The objective function is based on
the differences between the observed region centroids
and those predicted by the motion and structurc par-
ameters, and thus more robust to the noise-sensitive

boundaries of the extracted regions.
I1. Mathematical Formulation

2.1 Description of Displacement Field

Let a coordinate system (X, Y, Z) be fixed on a
camera with the origin coinciding with the projection
center of the camera. Assuming that the focal length
is unity, the perspective projection (x, y) on the ima-

ge of a point (X, ¥, Z) is given by

x= X/Z,
y= X/Z.

Consider a point P on an object in 3D. Let X =
[X, Y, Z]" be the 3D coordinate vector of P at time
¢, and let X' =[X',Y'.Z'] be the corresponding
vector at time . Let T and R denote the trans-
lation vector and rotation about the unit axis ;w=

[ny, ny, n;]" by an angle @, respectively. Then,

X' =RX+T )
where
m iz 73
R = Y1 ¥Ym ¥y (2)
31 TR Ty
and

T=1[Tx Ty T.T.
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Let (x,y) and (x', y') be the image coordinates
corresponding  to X and X, respectively. If the

point P is on a plane @X +bHY + cZ =1 at time ¢

whose unit surface normal is denoted by g, then

S | S
z= ax+by+c 3
Hence, from Egs. (1), (2) and (3), we get
X axtayyta
= zZ ax + agy +a9 @
Y ax +asy + ag )
Y 7z azx +agy +ay
where
ay, a; as s
A . ay as Qg = R+ T 72’5. (6)
a; ag dg

2.2 A Two-Step Approach based on Region
Correspondences

We first describe how to obtain a linear but ap-

proximate estimate using second-order approximation

of the displacement field. Then, we present a non-

linear objective function to be iteratively minimized

whose minimum should yield an exact estimate.

2.2.1 First Step:Linear Estimation
Using Egs. (4) and (5), the displacement vector
(D,, D,) is represented by

2
o _ eyt a—ag)xta,y— agxy— arx
Dy=x-x= arx+agy+ay @

_ @t mx + (a5 — ag) y— arxy— agy’
ax+agy+ ay

(8

Then, by using Egs. (3) and (6), the denominator
in Egs. (7) and (8) can be rewritten as follows:

a7x+a8y+ag=r33+]% +(r31x+r32y). (9)
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When the rotation angle @ is small, we have

rg X1, 7 X —wy and ryp Ty (10)
where
def
Wy = Ny
def
oy = nyw. (1

Then, the second term in Eq. (9) can be ignored
if the translation in the Z-direction is small relative
to the object distance from the camera, and the third
term can be ignored if wy, wy, and the image plane
coordinates are small. Hence, if we assume that (1)

Iz
z

and (3) the rotation about the X and Y axes is small,
then

<1, (2) the field of view of the camera is small,

arx+agy+ag=1. (12)

These assumptions which are quite common in motion
analysis are not very restrictive since the field of view
of a camera is small in practice and the amount of
motion is small if the time interval between two
images is short. As in [6], we will approximate the
displacement vector by the second-order polynomials in
(x, y). Note that we are approximating the displace
ments D, and D, instead of x" and y since [D,]
and {D,| are usvally smaller than |x'| and |y'|, re-

spectively. Therefore, we have

D, = a3 +(a,— ag)x + ayy— agxy— arx’ (13)

D, = ag+a;x+(a5— ag)y— ayxy—agy*. (14)

It is well-known that we can also derive the second-
order polynomials for (D,, D,) by using the instant-
ancous velocity formulation used for computing the
optical flow.

Now, we would like to relate region properties to

3D motion and structure [5]. Equations (7) and (8)
define a mapping G: (x, ¥) —(x", ¥'). Hence,

Glx,») =2 (g1(x, 3), g%, 3)

=(x",y)=(x+D,, y+D,).

Let M and N be the corresponding regions at two
time instants. For a smooth function f, we know

[ [, fxvaway= [ [ fGe+D,. y+D)dsdy (15)

where J is the Jacobian:

_| 981 d& _ dg 9g
I=17%% dy dy 0dx t (16)
Using Egs. (4), (5), (6) and (16), we arrive at

| (arx +agy+ay)° |

where det( A) represents the determinant of the ma-
trix A. The numerator of J in Eq. (17) is a constant,
and the expression in the denominator can be rewrit-

ten as previously:
- Iz
mxtagytag=rut+—7 +(ryx+7rpy).

We assume that three conditions stated earlier are
satisfied. Then, the second and third terms are small
compared to 1. Further, variations in Z, x and y are
not large since the integration is performed over one
region M in the image plane which is small. Hence,
the denominator of J can be approximated as a con-
stant over M. Then, Eq. (15) becomes

[ J, fxnasdy=1 [ [ fx+D,.y+D)deay. (18)

Note that if f=1, then the equation simply repre-
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sents the area relationship:

Nop = T My 19

where

N,; 2 ffzv x'y dxdy

My =L [ [ 5y vy, (20)

Hence, given a pair of regions at two time instants,
J can be treated as a constant which can be easily
computed. In principle, we can use a sufficiently large
number of functions f to find the unknowns. However,

we use only two functions f=x and f =y since

these choices make A(x + D,, y+D,) linear in the

coefficients ay, ..., @ag. Hence, by Egs. (13), (i4),
(18) and (19), we have two equations for each region
correspondence :
Ny My M, My,
Ny Hy = a;+(a, ag)—MOO +ay Moo b
LMy iy
8 MOO 7 MOO
N, M, M M,
N—E(‘) — "—M&]} = g4 +ay ——M(l)z + (as— ag) —M$ o)

M, M
" M " My

where Ny, ..., My are defined in Eq. (20). There-
fore, we can linearly compute 8 coefficients a,, ..., ag
from four or more region correspondences with aq
set to one since the coefficient ag can have any value

in the above two equations. Then, using the algor-
ithm presented in {1], we can noniteratively solve for

the motion and plane normal.

2.2.2 Second Step:Nonlinear Estimation
Since the set of nine coefficients in Egs. (4) and
(5) are not independently determined, we define a new
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set of coefficients C = (¢, ..., ¢y) as follows:
a; .

¢; = — for 1<8. 23)
aq

Our goal is to compute C without any approximation
from region correspondences. Thus, the problem is
nonlincar. Given C, we can easily compute the
motion and structure parameters using the algorithms
in [l].

Let M, and N, be the corresponding regions at
two time instants, and let M, be the predicted region
for moving region M; according to given C. If X is
a quantity computed from the region N,, then let
X denote the value of X computed from the pre-
dicted region M;.

The solution obtained by the method to be prese-
nted in this section minimizes a measure of inconsis-
tency between the observed regions (ie. N;) at #
and those predicted by the estimates of C (ie. M,).
To obtain such measure for a given C, we define two

error terms for each region correspondence i:

E,.(0) ¢ Jin R @)

E, (C) %L DN _ @25)

where N; o, N;j and N, are the moments of N,

defined in Eq. (20). Note that E; .(C) and E, (C)
represent the differences in x and y coordinates of
the centroids for N; and M., respectively.

The estimates of C are computed by minimizing
the following objective function with respect to C

using L region correspondences:

E(C) =% 5;1 (E:, +E). (26)

Here we have used only low-order moments of region
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shape to avoid the noise sensitivity of higher mo-
ments. Also, note that our region-based method does
not use region contour information since the exact

contours are very difficult to extract reliably.

I11. Performance Evaluation

Using known motion parameters and simulated ima-
ges, performance of the approximate linear estimation
method is compared with that of the exact iterative
.method. Performance of the point-based estimation [1]
is also presented for comparison. The values of
Nix and Nug are computed once and the lists

Nio Niw
of boundary points of each region M, at ¢, are stor-

d. To comput d for each
e o pute m an T—i' pair

of corresponding regions M; and N, at each iteration
given C, the boundary points of M; are predicted by
using Eqs. (4) and (5). Then, N,p, Nij and
N;: are computed by applying Green’s Theorem
to Eq. (20). To iteratively minimize Eq. (26), we use
a modified Levenberg-Marquardt algorithm.

The size of the simulated image plane is 0.5x0.5.
Twelve feature correspondences are used for points
and regions. At each trial, a plane passing through the
point at (0, 0, 10) is randomly generated. Then, 3D
coordinates of point features on the given plane are
randomly generated. A region boundary is generated
by four random variables: two for the center point,
one for the radius (from 0.01 to 0.08) and one for
the number of points (from 16 to 64) on a region
boundary. Only those features which are within visual
fields in two frames are generated. The image coord-
inates of the points are quantized to the nearest integer
for each resolution. The relative error of a vector is
defined by the Euclidean norm of the error vector
divided by the Euclidean norm of the correct vector.

The surface normal g, is scaled to the unit vector.

All errors represent the average errors over 50 random
trials.

We try three sets of motion parameters at various

image resolutions. Figure 1 shows the average relative

— . . —>
errors of surface normal #ng ,, rotation axis #,, rot-

ation angle o and translation T for the first set of
known motion parameters ( 7,=[0, 0, 1], =10

deg and F=[02, 02, 0]'). We note that this ideal
set of parameters perfectly satisfies three assumptions
stated in Section 2.2.1. Figure 2 shows the average

relative errors of —;ls‘ 1, ;w, w and T for the se-
cond set of motion parameters ;(f [0.5774, 0.5774,

0.5774]", w =4 deg and 7T =[0.2,02,02]'). Finally,
Fig. 3 shows the average relative errors for the third

set of motion parameters -1;,,,= [0.5774, 0.5774,

057741, w=7 deg and 7T =[02, 0.2, 2]'). Note
that this set of motion parameters has relatively large
values of T, and rotation about the X and Y axes,
which do not well satisfy the three assumptions.

The following observations can be made from these
simulations. First, as the resolution becomes higher,
the linear point-based estimates and the nonlinear
region-based estimates become more accurate whereas
the accuracy of the linear region-based estimates does
not improve beyond certain resolution as we can see
from Figs. 2 and 3. This is expected since the ap-
proximations are made under three assumptions (See
Section 2.2.1.) when the region-based equations for
the linear estimation are derived. Note that both lin-
ear and nonlinear region-based estimations have the
same performance in the ideal case such as Fig. L.
Second, for the type of motions where three assumpt-
ions are relatively well satisfied (for example, Figs. 1
and 2), the region-based estimations, both linear and
nonlinear, yield more reliable result than point-based
method for low to mid resolutions due to the robus-
tness of the centroids of regions to the quantization
errors of the region boundaries. However, when the
assumptions are not well satisfied, (for example, Fig.
3), the linear point-based estimates are better than the
linear region-based ones. Third, estimation of the trans-
lation is the most noise-sensitive.
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Fig. 1 Performance Comparison. Resolutions are varied from 64 X64 to 2432x2432 for a set of actual parameters
(7,10, 0, 1, =10 deg and 7 =[0.2, 0.2, 0]").
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Fig. 2 Performance Comparison. Resolutions arc varied from 64X 64 to 2432x2432 for a set of actual parameters
(_7;,,,- [0.5774, 0.5774, 0.5774]", @ =4 deg and T=102, 02, 02]').

2339



WEE IR A

‘98-9 Vol.23 No.9

Average relative error (%)

Average relative error (%)

Error of Sn versus Resolution

26 - —— T T T T T v -
24
)
22} ! ) 1
[ Nonlinear Region
20 - — - - Linear Region
- - Paint E
o . . N A vy T
0 200 400 600 8OO 1000 1200 1400 160C 1800 2000 2200 2400 2600
Resolution :
(a) Error of surface normal (1ig ;).
Error of R ungle versus Resolution
26 T T T T T T T + —— T v
24}
1
2t i ) 1
——— Nonlinear Region
20 - —~—~ Linear Region 1
B - - - - Paint 1
{38 1
'
4 4
1
e 1
\
wor
8 <4
6
. ]
2t ]
o . . I oo S
0O 200 400 600 800

1000 1200 1400 1600 1800 2000 2200 2400 2600
Resolution

(c) Error of rotation angle (w).

-
S

I
&

Average relative error (%)
P
8 & 3 B

o

Error of R axis versus Resolution

8

\ Linear Region q

T ¥ T T T T T T T T T T

-- Nonlinear Region

- - - Point

PR oo waree: e S il

1
200 400 600 BOC 1000 1200 1400 1600 1800 2000 2200 2400 2600
Resolution

{(b) Error of rotation axis (fi,).

Error of T versus Resolution

Average relative error (%)
3

T T T T T T T T T T T T

Nontinear Region
——-- Linear Region ]
-~ Point

[

P T T
200 400 600 B0O 1000 1200 1400 160C 1800 2000 2200 2400 2600
Resolution

(d) Error of transiation (T°).
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(2, = [0.5774, 0.5774, 0.5774]', @ =7 deg and T=102, 02, 27').
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We also vary the number of feature corresponden-
ces used for estimation at a fixed resolution. Figure

4 shows the average relative errors of _;Ls. s ;w. w
and T for the second set of motion parameters
(7, = [0.5774, 0.5774, 0.5774]', w=4 deg and 7

={0.2, 0.2, 0.2]"). We observe that increasing the
number of features gives better estimates for the non-
linear region-based estimates and the linear point-based
estimates. However, the accuracy of the linear region-
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based estimates does not improve beyond certain re-
solution due to the approximations.

From these simulations, we see that the two-step
region-based approach gives

robust estimates at all resolutions for any type of
motion of a planar surface. Note that these simul-
ations are based on the assumption of perfect extract-

ion and matching of features up to the quantization
erTors.
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Fig. 4 Performance Comparison. The number of feature correspondences is varied from 6 to 200 at a fixed resolution of
512X 512 for a set of actual parameters ( 71, = [0.5774, 0.5774, 0.5774), w =4 deg and T =[02, 02, 02]).
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1V. Experimental Results with Image Pairs

4.1 Implementation Details

Regions are extracted using multiple intensity thre-
sholds. For point feature detection, we use local
maxima and minima of intensity values. Then, the
algorithm described in [5] is applied to pairs of the
images to match the points and regions and then to
segment them into the locally planar surface patches.
The approximate linear estimation method and the
exact nonlinear method are applied to estimate the
motion and structure parameters from region corre-
spondences. The linear algorithm based on point cor-
respondences  presented in [1] is also applied for

comparison.

4.2 Experimental Results for Two pairs of
Images

We conducted the experiments with two pairs of

images, one synthetic and one real. Although there

arc dual solutions for a planar surface, only the closer

solution to the ground truth is shown.

4.2.1 Runway Images

We use two frames of a synthetic sequence. The
focal length is 8 mm. The field of view of the ca-
mera is 40 by 34.4 (deg) corresponding to the image
resolution of 560 by 480. The matching and seg-
mentation algorithm yields 21 region correspondences
and 57 point correspondences. The input images, the
segment corresponding to the ground and matching
result are shown in Fig. 5.

True values and results of nonlinear region-based
estimation of the motion and structure parameters are
shown in Table 1, where the estimates can be seen
very good. In Table 2, relative errors of point-based
estimates, linear region-based estimates and nonlincar
region-based estimates are presented for comparison.
Errors of the linear region-based estimates are close
to those of the nonlinear region-based ones. Points
do not give good results in this case since it is dif-

ficult to extract good point features.
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(a)

(b)

Fig. 5 Runway Images: (a) First image, and its matched
points and regions. (b) Second image, and its
matched points and regions.

Table 1. Runway: True values and nonlinear region-based
estimates of surface normal (—ﬁs},) at f,, rotation

axis (71‘,, ), rotation angle (w), and translation (7‘).

True Values Nonlinear Sol.
;;5-,1 [ 09150, 0.3624, 0.1772} | [ 0.8934, 0.4109, 0.1815]
7, {01222, - 0.0368, 0.9918] | [0.1266, - 0.0413, 0.9911]
w 7.2000 deg 7.3108 deg
T | [0.0460, —0.0160, 0.2300] | [0.0487, —0.0092, 0.2206]
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Table 2. Runway: Reclative cstimation crrors.

Error in % Point Lincar Reg. | Nonlincar Reg.
[ 71,5692 53520 5.2267

., 37027 0.7257 0.63326

@ 15,0444 2.0319 15389
K7 25.1390 5.7663 5.0667

4.2.2 PUMA Image

Two real images of a PUMA robot are used. The
focal length is 35 mm and the field of view of the
camera is approximately 13 deg. The image size is
500 by 384. The matching and segmentation algor-
ithm yields 6 region correspondences and 45 point cor-
respondences for the segment corresponding the large
arm of the robot. The input images, the segment cor-
responding to the large arm and matching result are
shown in Fig. 6.

True values and results of nonlincar region-based
estimation are shown in Table 3 where we see that
the estimates are good. In Table 4, relative crrors of
point-based estimates, linear region-based estimates and
nonlinear region-based estimates are presented for com-
parison. The lincar region-based estimates are almost
identical to the nonlincar region-based ones. Errors of
the point-based estimates are large due (o the difficu-

Ity of extracting reliable point features.

(2)

(b)

Fig. 6 PUMA lImages: (a) First image, and its matched
points and regions. (b) Sccond image, and its
matched points and regions,

Table 3. PUMA . Truc valucs and nonlincar cstimatcs.

Nonlincar Sol.
n,\\r “ir 0.0214, 0.6180, 0,7860}”‘ 10.1388, 0.6874, 0.7129]
w, |1 0‘()214.7;)7.6180. (),7860]~ - 0.0897, 0.5442, 0.8342]
@ 37529 dey - 36514 deg

7 NA 10.0543, 0.0070, 0.0086}

True Values

Table 4. PUMA : Rclative cstimation crrors.

Error in % Point Lincar Reg. | Nonlincar Reg.
M 855166 18.9255 18.9255
Ny 70.8301 (.15 101§
® 19.6808 27019 27046

V. Conclustion

We have presented a two-step approach for estim-
ating the motion and structure parameters for piece-
wise planar surfaces from region correspondences in
two views. We have shown that our approach gives
robust estimates. We also showed that the linear, but
approximate solution yiclds a performance similar to

the nonlinear (exact) solution at moderate resolutions
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if the commonly-assumed conditions are satisfied. Our
algorithm is less sensitive to noise than the point-
based methods because it uses regions as features
which are more robust features than points. The pro-
blem with point-based methods mainly comes from the
difficulty with extracting good point features despite
its easier mathematical manipulation. For the compar-
ison with the existing region-based approaches [7], our
method is computationally efficient since it scans the
boundary points of regions to compute the first mo-
ments (using Green's Theorem) during the minimization
rather than scanning the whole pixels of the regions.
For the MPEG-4 shape coding, it is necessary to
compute the motion of regions (or contour) and thus

our approach for region-based estimation can be used.
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